
CIS 6930/4930 Computer and Network
Security

Topic 4. Cryptographic Hash
Functions

1

Hash Function

• Also known as

– Message digest

– One-way transformation

– One-way function

– Hash

• Length of H(m) much shorter then length of m

• Usually fixed lengths: 128 or 160 bits

Message of

arbitrary length
Hash

A fixed-length

short message

2

Desirable Properties of Hash Functions

• Consider a hash function H

– Performance: Easy to compute H(m)

– One-way property: Given H(m) but not m, it’s
computationally infeasible to find m

– Weak collision resistance (free): Given H(m), it’s
computationally infeasible to find m’ such that
H(m’) = H(m).

– Strong collision resistance (free): Computationally
infeasible to find m1, m2 such that H(m1) = H(m2)

3

Length of Hash Image

• Question

– Why do we have 128 bits or 160 bits in the output
of a hash function?

– If it is too long

• Unnecessary overhead

– If it is too short

• Loss of strong collision free property

• Birthday paradox

4

Birthday Paradox

• Question:
– What is the smallest group size k such that

• The probability that at least two people in the group
have the same birthday is greater than 0.5?

• Assume 365 days a year, and all birthdays are equally
likely

– P(k people having k different birthdays):
Q(365,k) = (1-1/365)×(1-2/365)×(1-3/365)×…×{1-(k-1)/365}

= (364/365)×(363/365)×(362/365)×…×{(365-(k-1))/365}
= 365!/(365-k)!365k

– P(at least two people have the same birthday):
P(365,k) = 1-Q(365,k)  0.5

– k is about 23

5

Birthday Paradox (Cont’d)

• Generalization of birthday paradox

– Given
• a random integer with uniform distribution between 1 and n, and

• a selection of k instances of the random variables,

– What is the least value of k such that
• There will be at least one duplicate

• with probability P(n,k) > 0.5, ?

6

Birthday Paradox (Cont’d)

• Generalization of birthday paradox

– P(n,k) = 1-{n!/(n-k)!nk }  1 – e-k*(k-1)/2n

– For large n and k, to have P(n,k) > 0.5 with the
smallest k, we have

– Example

• 1.18*(365)1/2 = 22.54


k  2(ln2)n 1.18 n  n

7

Birthday Paradox (Cont’d)

• Implication for hash function H of length m
• The hash value of an arbitrary input message is

randomly distributed between 1 and 2m

– What is the least value of k such that

• If we hash k messages, the probability that at least two
of them have the same hash is larger than 0.5?

– Birthday attack

• Choose m  128

2/22 mmnk 

8

Hash Function Applications

9

Application: File Authentication

• Want to detect if a file has been changed by
someone after it was stored

• Method
– Compute a hash H(F) of file F

– Store H(F) separately from F

– Can tell at any later time if F has been changed by
computing H(F’) and comparing to stored H(F)

• Why not just store a duplicate copy of F???

10

Application: User Authentication
• Alice wants to authenticate herself to Bob

– assuming they already share a secret key K

• Protocol:

Alice Bob

tim
e 

picks random

number R

computes

Y=H(R|K)

verifies that

Y=H(R|K)

11

User Authentication… (cont’d)

• Why not just send…

– …K, in plaintext?

– …H(K)? , i.e., what’s the purpose of R?

12

Application: Commitment Protocols
• Ex.: A and B wish to play the game of “odd or even”

over the network

1. A picks a number X

2. B picks another number Y

3. A and B “simultaneously” exchange X and Y

4. A wins if X+Y is odd, otherwise B wins

• If A gets Y before deciding X, A can easily cheat
(and vice versa for B)

– How to prevent this?

13

Commitment… (Cont’d)

• Can either A or B successfully cheat now?

A B

Picks Y

verifies that

H(X) = Z

A picks X and

computes Z=H(X)

• Proposal: A must commit to X before B will send Y

• Protocol:

14

Commitment… (Cont’d)

• Why is sending H(X) better than sending X?

• Why is sending H(X) good enough to prevent A from
cheating?

• Why is it not necessary for B to send H(Y) (instead
of Y)?

• What problems are there if:

The set of possible values for X is small?

15

Application: Message Encryption

• Assume A and B share a secret key K

– but don’t want to just use encryption of the
message with K

• A sends B the (encrypted) random number
R1,
B sends A the (encrypted) random number
R2

• And then…

16

• R1 | R2 is used like the IV of OFB mode, but C+H replaces encryption;
Why do we use the key at all, if R1 | R2 is secure?

one-time pad

E

C1 C2 C3 C4

M1 M2 M3 M4

Initialization

Vector

E E E
Key

64

64 64 6464

64 64 46 + padding64

one-time pad

C1 C2 C3 C4

M1 M2 M3 M4

R1 | R2

Key

64

64 64 6464

64 64 46 + padding64

= Concatenate, then Hash

C+H H H H

C+H

17

Application: Message Authentication
• A wishes to authenticate (but not encrypt) a message M (and

A, B share secret key K)

A B

verifies that

Y = H(M|K|R)

1. picks random

number R

2. computes

Y = H(M|K|R)

• Why is R needed? Why is K needed?
18

Application: Digital Signatures

• Only one party (Bob) knows the private key

Message m
Hash

H(m)
Sign

Bob’s Private key

Signature

(encrypted

hash)

Generating a signature

Message m
Hash

H(m)

Verify

Bob’s Public key
Signature

Valid /

Not Valid

Verifying a signature

19

Is Encryption a Good Hash Function?

• Building hash using block chaining techniques
– Encryption block size may be too short (DES=64)

• Birthday attack

– Expensive in terms of computation time

E

constant

M1

64

Hash

E
M2

E
M3

E
M4

20

21

Modern Hash Functions

• MD5
– Previous versions (i.e., MD2, MD4) have weaknesses.

– Broken; collisions published in August 2004

– Previous versions are too weak to be used for serious applications

• SHA (Secure Hash Algorithm)
– Weaknesses were found

• SHA-1
– Broken, but not yet cracked

– Collisions in 269 hash operations, much less than the birthday attack of
280 operations

– Results were circulated in February 2005, and published in CRYPTO ’05
in August 2005

• SHA-256, SHA-384, …

22

The MD5 Hash Function

23

MD5: Message Digest Version 5

Message of

arbitrary length

MD5

(multiple

passes)

128-bit

message digest

• MD5 at a glance

24

Processing of A Single Block

128-bit input message

digest (four 32-bit words)

512-bit message block

(sixteen 32-bit words)

MD5

128-bit output message

digest (four 32-bit words)

Called a compression function

25

MD5: A High-Level View

Message 100…0

K bits

Message Length

(K mod 264)

Padding

(1 to 512 bits)

Y0

512 bits

Y1

512 bits

… YL-1

512 bits

MD5 MD5

IV

128 bits

CV1

MD5

CVL-1

128-bit

digest

128 bits 128 bits 128 bits

stage 1 stage 2 stage L

…

26

Padding
• There is always padding for MD5, and padded

messages must be multiples of 512 bits

• To original message M, add padding bits “10…0”
– enough 0’s so that resulting total length is 64 bits less

than a multiple of 512 bits

• Append L (original length of M), represented in 64
bits, to the padded message

• Footnote: the bytes of each 32-bit word are stored
in little-endian order (LSB to MSB)

27

Padding… (cont’d)

• How many 0’s if length of M =

• n * 512?

• n * 512 – 64?

• n * 512 – 65?

28

Preliminaries
• The four 32-bit words of the output (the

digest) are referred to as d0, d1, d2, d3

• Initial values (in little-endian order)
– d0 = 0x67452301

– d1 = 0xEFCDAB89

– d2 = 0x98BADCFE

– d3 = 0x10325476

• The sixteen 32-bit words of each message
block are referred to as m0, …, m15
– (16*32 = 512 bits in each block)

29

Notation
• ~x = bit-wise complement of x

• xy, xy, xy = bit-wise AND, OR, XOR of
x and y

• x<<y = left circular shift of x by y bits

• x+y = arithmetic sum of x and y (discarding
carry-out from the msb)

• x = largest integer less than or equal to x

30

Processing a Block -- Overview

• Every message block Yi contains 16 32-bit words:

– m0 m1 m2 … m15

• A block is processed in 4 consecutive passes, each
modifying the MD5 buffer d0, …, d3.
– Called F, G,H, I

• Each pass uses one-fourth of a 64-element table of
constants, T[1…64]

– T[i] = 232*abs(sin(i)) , represented in 32 bits

– Page 137

• Output digest = input digest + output of 4th pass

31

Overview (Cont’d)
Input Digest CVi

128 bits

F, T[1..16], Yi

G, T[17..32], Yi

H, T[33..48], Yi

I, T[49..64], Yi

Message Block

Yi

+ + + +

d0 d1 d2 d3
512 bits

32 32 32 32

Output Digest CVi+1
128 bits

1st pass

2nd pass

3rd pass

4th pass

32

1st Pass of MD5
• F(x,y,z) (xy)(~xz)

• 16 processing steps, producing d0..d3 output:
di = dj + (dk + F(dl , dm , dn) + mo + Tp) << s
– values of subscripts, in this order

i j k l m n o p s

0 1 0 1 2 3 0 1 7

3 0 3 0 1 2 1 2 12

2 3 2 3 0 1 2 3 17

1 2 1 2 3 0 3 4 22

0 1 0 1 2 3 4 5 7

def


33

2nd Pass of MD5
• G(x,y,z) (xz)(y~z)

• Form of processing (16 steps):
di = dj + (dk + G(dl,dm,dn) + mo + Tp) << s

i j k l m n o p s

0 1 0 1 2 3 1 17 5

3 0 3 0 1 2 6 18 9

2 3 2 3 0 1 11 19 14

1 2 1 2 3 0 0 20 20

0 1 0 1 2 3 5 21 5

def


34

3rd Pass of MD5
• H(x,y,z) (x  y  z)

• Form of processing (16 steps):
di = dj + (dk + H(dl,dm,dn) + mo + Tp) << s

i j k l m n o p s

0 1 0 1 2 3 5 33 4

3 0 3 0 1 2 8 34 11

2 3 2 3 0 1 11 35 16

1 2 1 2 3 0 14 36 23

0 1 0 1 2 3 1 37 4

def


35

4th Pass of MD5
• I(x,y,z) y  (x~z)

• Form of processing (16 steps):
di = dj + (dk + I(dl,dm,dn) + mo + Tp) << s

i j k l m n o p s

0 1 0 1 2 3 0 49 6

3 0 3 0 1 2 7 50 10

2 3 2 3 0 1 14 51 15

1 2 1 2 3 0 5 52 21

0 1 0 1 2 3 12 53 6

def


• Output of this pass added to input CV

36

Logic of Each Step

• Within each pass, each of the 16 words of the message block is
used exactly once
– Pass 1, mi are used in the order of i

– Pass 2, in the order of 2(i), where 2(i)=(1+5i)  15

– Pass 3, in the order or 3(i), where 3(i)=(5+3i)  15

– Pass 4, in the order or 4(i), where 4(i)=7i  15

• Each word of T[i] is used exactly once throughout all passes

• Number of bits s to rotate to get di

– Pass 1, s(d0)=7, s(d1)=22, s(d2)=17, s(d3)=12

– Pass 2, s(d0)=5, s(d1)=20, s(d2)=14, s(d3)=9

– Pass 3, s(d0)=4, s(d1)=23, s(d2)=16, s(d3)=11

– Pass 4, s(d0)=6, s(d1)=21, s(d2)=15, s(d3)=10

37

(In)security of MD5
• A few recently discovered methods can find

collisions in a few hours
– A few collisions were published in 2004

– Can find many collisions for 1024-bit messages

– In 2005, two X.509 certificates with different public keys
and the same MD5 hash were constructed
• This method is based on differential analysis

• 8 hours on a 1.6GHz computer

• Much faster than birthday attack

