
CIS 6930/4930 Computer and Network
Security

Topic 4. Cryptographic Hash
Functions

1

The SHA-1 Hash Function

2

Secure Hash Algorithm (SHA)

• Developed by NIST, specified in the Secure
Hash Standard, 1993

• SHA is specified as the hash algorithm in the
Digital Signature Standard (DSS)

• SHA-1: revised (1995) version of SHA

3

SHA-1 Parameters
• Input message must be < 264 bits

• Input message is processed in 512-bit blocks, with the
same padding as MD5

• Message digest output is 160 bits long

– Referred to as five 32-bit words A, B, C, D, E

– IV: A = 0x67452301, B = 0xEFCDAB89, C = 0x98BADCFE, D =
0x10325476, E = 0xC3D2E1F0

• Footnote: bytes of words are stored in big-endian
order

4

Preprocessing of a Block

• Let 512-bit block be denoted as sixteen 32-bit
words W0..W15

• Preprocess W0..W15 to derive an additional
sixty-four 32-bit words W16..W79, as follows:

for 16  t  79
Wt = (Wt-16  Wt-14  Wt-8  Wt-3) << 1

5

Block Processing

• Consists of 80 steps! (vs. 64 for MD5)

• Inputs for each step 0  t  79:
– Wt

– Kt – a constant

– A,B,C,D,E: current values to this point

• Outputs for each step:
– A,B,C,D,E : new values

• Output of last step is added to input of first
step to produce 160-bit Message Digest

6

Constants Kt

• Only 4 values (represented in 32 bits), derived
from 230 * i1/2, for i = 2, 3, 5, 10

– for 0  t  19: Kt = 0x5A827999

– for 20  t  39: Kt = 0x6ED9EBA1

– for 40  t  59: Kt = 0x8F1BBCDC

– for 60  t  79: Kt = 0xCA62C1D6

7

Function f(t,B,C,D)
• 3 different functions are used in SHA-1 processing

8

Round Function f(t,B,C,D)

0  t  19 (BC)  (~BD)

20  t  39 B  C  D

40  t  59 (BC)  (BD)  (CD)

60  t  79 B  C  D

Compare with MD-5

F = (xy)  (~xz)

H = x  y  z

H = x  y  z

• No use of MD5’s G ((xz)(y~z)) or I (y  (x~z))

Processing Per Step

• Everything to right of “=” is input value to this
step

9

for t = 0 upto 79

A = E + (A << 5) + Wt + Kt + f(t,B,C,D)

B = A

C = B << 30

D = C

E = D

endfor

Comparison: SHA-1 vs. MD5

• SHA-1 is a stronger algorithm

– brute-force attacks require on the order of 280

operations vs. 264 for MD5

• SHA-1 is about twice as expensive to compute

• Both MD-5 and SHA-1 are much faster to
compute than DES

10

Security of SHA-1

• SHA-1

– “Broken”, but not yet cracked

– Collisions in 269 hash operations, much less than
the brute-force attack of 280 operations

– Results were circulated in February 2005, and
published in CRYPTO ’05 in August 2005

11

The Hashed Message Authentication
Code (HMAC)

• HMAC generates the message digest of both a
message and a key

• Essence: digest-inside-a-digest, with the secret
used at both levels

• The particular hash function used determines
the length of HMAC output

12

HMAC Processing

13

Key K

0x363636…36

compute

message digest



pad on right with 0’s to

512 bits in length

concatenate

Message M

0x5c5c5c…5c

HMAC(key,message)



compute

message digest

concatenate

Summary

• Hashing is fast to compute

• Has many applications (some making use of a
secret key)

• Hash images must be at least 128 bits long

– but longer is better

• Hash function details are tedious 

• HMAC generates the message digest of both a
message and a key

14

15

CIS 6930/4930 Computer and Network
Security

Topic 5.1 Basic Number Theory --
Foundation of Public Key Cryptography

16

GCD and Euclid’s Algorithm

17

Some Review: Divisors

• Set of all integers is Z = {…,2, 1,0,1,2,…}

• b divides a (or b is a divisor of a) if a = mb for
some m

– denoted b|a

– any b  0 divides 0

• For any a, 1 and a are trivial divisors of a

– all other divisors of a are called factors of a

18

Primes and Factors

• a is prime if it has no non-trivial factors

– examples: 2, 3, 5, 7, 11, 13, 17, 19, 31,…

• Theorem: there are infinitely many primes

• Any integer a > 1 can be factored in a unique
way as p1

a
1 • p2

a
2 • … pt

a
t

– where all p1>p2>…>pt are prime numbers and
where each ai > 0

Examples:

91 = 13171

11,011 = 131 112 71

19

Common Divisors

• A number d that is a divisor of both a and b is
a common divisor of a and b

• If d|a and d|b, then d|(a+b) and d|(a-b)

• If d|a and d|b, then d|(ax+by) for any integers
x and y

Example: common divisors of 30 and 24 are 1, 2, 3, 6

Example: Since 3 | 30 and 3 | 24 , 3 | (30+24) and 3 | (30-24)

Example: 3 | 30 and 3 | 24  3 | (2*30 + 6*24)

20

Greatest Common Divisor (GCD)
• gcd(a,b) = max{k | k|a and k|b}

• Observations
– gcd(a,b) = gcd(|a|, |b|)

– gcd(a,b)  min(|a|, |b|)

– if 0  n, then gcd(an, bn) = n*gcd(a,b)

• For all positive integers d, a, and b…
…if d | ab
…and gcd(a,d) = 1
…then d|b

Example: gcd(60,24) = 12, gcd(a,0) = a

21

GCD (Cont’d)
• Computing GCD by hand:

if a = p1
a1 p2

a2 … pr
ar and

b = p1
b1 p2

b2 … pr
br ,

…where p1 < p2 < … < pr are prime,
…and ai and bi are nonnegative,
…then gcd(a, b) =

p1
min(a1, b1) p2

min(a2, b2) … pr
min(ar, br)

Slow way to find the GCD

 requires factoring a and b first (which, as we will
see, can be slow)

22

Euclid’s Algorithm for GCD
• Insight:

gcd(x, y) = gcd(y, x mod y)

• Procedure euclid(x, y):

r[0] = x, r[1] = y, n = 1;

while (r[n] != 0) {

n = n+1;

r[n] = r[n-2] % r[n-1];

}

return r[n-1];

23

Example

n rn

0 595

1 408

2 595 mod 408 = 187

3 408 mod 187 = 34

4 187 mod 34 = 17

5 34 mod 17 = 0

gcd(595,408) = 17

24

Running Time
• Running time is logarithmic in size of x and y

Enter x and y: 102334155 63245986

Step 1: r[i] = 39088169

Step 2: r[i] = 24157817

Step 3: r[i] = 14930352

Step 4: r[i] = 9227465

…

Step 35: r[i] = 3

Step 36: r[i] = 2

Step 37: r[i] = 1

Step 38: r[i] = 0

gcd of 102334155 and 63245986 is 1

25

Extended Euclid’s Algorithm

• Let LC(x,y) = {ux+vy : x,y  Z} be the set of
linear combinations of x and y

• Theorem: if x and y are any integers > 0, then
gcd(x,y) is the smallest positive element of
LC(x,y)

• Euclid’s algorithm can be extended to
compute u and v, as well as gcd(x,y)

• Procedure exteuclid(x, y):
(next page…)

26

Extended Euclid’s Algorithm
r[0] = x, r[1] = y, n = 1;

u[0] = 1, u[1] = 0;

v[0] = 0, v[1] = 1;

while (r[n] != 0) {

n = n+1;

r[n] = r[n-2] % r[n-1];

q[n] = (int) (r[n-2] / r[n-1]);

u[n] = u[n-2] – q[n]*u[n-1];

v[n] = v[n-2] – q[n]*v[n-1];

}

return r[n-1], u[n-1], v[n-1];

floor

function

27

Extended Euclid’s Example
n qn rn un vn

0 - 595 1 0

1 - 408 0 1

2 1 187 1 -1

3 2 34 -2 3

4 5 17 11 -16

5 2 0 -24 35

gcd(595,408) = 17 = 11*595 + -16*408

28

Relatively Prime
• Integers a and b are relatively prime iff

gcd(a,b) = 1

– example: 8 and 15 are relatively prime

• Integers n1,n2,…nk are pairwise relatively
prime if gcd(ni,nj) = 1 for all i  j

