CIS 6930/4930 Computer and Network
Security

Topic 5.1 Basic Number Theory --
Foundation of Public Key Cryptography



Review of Modular Arithmetic



Remainders and Congruency

* For any integer a and any positive integer n,
there are two unique integers g and r, such
that0<r<nanda=qgn+r

— ris the remainder of a divided by n,
written r=a mod n

Example: 12=2*5+2 = 2=12mod>5

* g and b are congruent modulo n, written
a=bmodn, ifamodn=bmodn

Example: 7mod5=12mod5 = 7=12mod 5




Remainders (Cont’d)

* For any positive integer n, the integers can be
divided into n equivalence classes according
to their remainders modulo n

— denote the setas Z_

* j.e., the (mod n) operator maps all integers
into the set of integers £ ={(0, 1, 2, ..., (n-1)}



Modular Arithmetic
e Modular addition

— [(a@ mod n) + (b mod n)] mod n = (a+b) mod n

Example: [16 mod 12 + 8 mod 12] mod 12 = (16 + 8) mod 12 =0

e Modular subtraction

— [(a@ mod n) — (b mod n)] mod n=(a—b) modn

Example: [22 mod 12 - 8 mod 12] mod 12 = (22 - 8) mod 12 = 2

* Modular multiplication

— [(@ mod n) x (b mod n)] mod n=(a x b) mod n

Example: [22 mod 12 x 8 mod 12] mod 12 = (22 x 8) mod 12 = 8
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Properties of Modular Arithmetic

e Commutative laws
—(w+x) modn=(x+w)modn
— (wx x) mod n=(xxw)modn
* Associative laws
— [(w+x)+y]lmod n=[w+(x+y)] modn

— [(wxx)xy

e Distributive

— [wx (x+y)]

mod n = [w X (x x y)] mod n

aw
mod n = [(w x x)+(w x y)] mod n



Properties (Cont’d)
* |dempotent elements
— (0+ m) mod n=mmodn
— (I xm)modn=mmodn
* Additive inverse (—w)

— for each m € Z,, there exists z such that
(m+z)modn=0

Example: 3 are 4 are additive inverses mod 7, since (3+4) mod 7 =0

* Multiplicative inverse

— for each positive m € £, is there a z s.t.
(Mm*z)modn=1



Multiplicative Inverses

 Don’t always exist!

— Ex.: there is no zsuch that 6 x z=1 mod 8 (m =6 and n=8)

2z Jo 1 f2 3 4 |5 |6 |7
6z |0 |6 |12 |18 |24 |30 |36 |42 R

6-zmod8 0 16 4 2 0 6 4 2

 An positive integer m €Z, has a multiplicative
inverse m* mod n iff gcd(m, n) =1, i.e., m and n are
relatively prime

= If nis a prime number, then all positive elements in Z,
have multiplicative inverses



Inverses (Cont’d)

2z Jojil2|3[4]5 |6 |7
52 0| 5[10]15] 20

Samods |0 5| 2| 7| 4] 1] 6 3



Finding the Multiplicative Inverse

Given m and n, how do you find m* mod n?
Extended Euclid’s Algorithm
exteuclid(m,n):

mimodn=v__,

— if gcd(m,n) # 1 there is no multiplicative inverse
m~ mod n
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Example

gcd(35,12) = 1 =/-1*35 + o 3%12

1271 mod 35 = 3 (i.e., 12*3 mod 35 = 1)
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Modular Division

* |f the inverse of b mod n exists, then

(a mod n) /(b modn)=(a*(b!modn))modn

Example: (13 mod 11) / (4 mod 11) = (13*(4' mod 11)) mod
11=(13*3)mod 11 =6

Example: (8 mod 10) / (4 mod 10) not defined since
4 does not have a multiplicative inverse mod 10
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Modular Exponentiation (Power)



Modular Powers

Example: show the powers of 3 mod 7

i o 1 2 3 4 5 6 7 8

3 1 3 9 27 81 243 729 2187 6561
S3mod7 1 3 2 6 4 5 1 3 2

And the powers of 2 mod 7

i 4 5 6 7 8 9

0O 1 2 3
2! 1 2 4 8 16 32 64 128 256 512
1 2 4 1

2'mod 7 2 4 1 2 4 1
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Fermat’s “Little” Theorem

* If pisprime
...and a is a positive integer not divisible by p,
..thenagfP1=1 (modp)

Example: 11 is prime, 3 not divisible by 11,
so 311 =59049 =1 (mod 11)

Example: 37 Is prime, 51 not divisible by 37,
so0 513/-1=1 (mod 37)
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Proof of Fermat’s Theorem

* Observation: {a mod p, 2a mod p, ..., (p-1)a
mod p} =11, 2, ..., (p-1)}.
[(@a mod p) x(2a mod p) x... x((p-1)a mod p)]
= a x2a x.. X(p-1)a mod p
(p-1)! = (p-1)! x aP! mod p
* Thus, aP! =1 mod p.



The Totient Function

* ¢(n)=|Z,| =the number of integers less than n
and relatively prime to n

a) if nisprime, then ¢(n) =n-1
Example: ¢(7) =6

b) if n=p¢9 where p is prime and a > 0, then
¢(n) = (p-1)*

Example: ¢(25) = ¢(5°) = 4*51 = 20

c) if n=p*q, and p, g are relatively prime, then

o(n) = d(p)*(q)

Example: ¢(15) = ¢(5*3) = ¢(5) *¢(3) =4 *2=18
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Fuler’s Theorem

* For every a and n that are relatively prime,
a®" =1 mod n

Example: For a = 3, n = 10, which relatively prime:

¢(10) = ¢(2*3) = ¢(2) * ¢(5) =1*4 = 4
3¢10)=34=81= 1 mod 10

Example: For a =2, n =11, which are relatively prime:
¢(11) =11-1=10
2 911 =210=1024 =1 mod 11
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More Euler...

 Variant:

for all n, a “"*1 = g mod n for all ain Z_*, and all non-
negative k

Example: forn=20,a =7, ¢(n) =8, and k = 3:
7381 =7 mod 20

* Generalized Euler’s Theorem:
for n = pg (p and g distinct primes),
a KM+l = g mod n forallain Z,and all
non-negative k

Example: forn=15,a =6, ¢(n) =8, and k = 3:
6 3"8*1 = 6 mod 15
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Modular Exponentiation

e x¥mod n = xyYmMedoln) mod n

Example: Xx=5,y=7,n=6, ¢(6) =2
5'mod 6 =57Mmd2 mod 6 =5 mod 6

* by this, if y=1 mod ¢(n), then X mod n =x mod n

Example:
Xx=2,y=101,n=33, $(33) =20, 101 mod 20 =1

2101 mod 33 =2 mod 33
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The Powers of An Integer, Modulo n

* Consider the expression =1 mod n

* |f a and n are relatively prime, then there is at

least one integer m that satisfies the above
equation

e Ex:fora=3and n=7, whatis m?

. 1l2]3]4l5]6|7]8

0
Smod7 3| 2] 6|45 132 6
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The Power (Cont’d)

* The smallest positive exponent m for which
the above equation holds is referred to as...

— the order of a (mod n), or
— the length of the period generated by a
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Understanding Order of a (mod n)
Powers of some integers a modulo 19

order

3 3 0 0 3 A R B R S B e K K B B e
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Observations on The Previous Table

* The length of each period divides 18= ¢(19)
—i.e., the lengthsare 1, 2, 3,6, 9, 18

* Some of the sequences are of length 18

— e.g., the base 2 generates (via powers) all
members of Z °

— The base is called the primitive root

— The base is also called the generator when n is
prime
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Reminder of Results

Totient function:
If nis prime, then ¢(n) = n-1

If n = p<% where p is prime and o > 0, then ¢(n) = (p-1)*p=*
If n=p=q, and p, q are relatively prime, then ¢(n) = ¢(p)*9(q)

Example: ¢(7) =6

Example: $(25) = ¢(5%) = 4*51 = 20

Example: ¢(15) = ¢(5*3) = ¢(5) * d(3) =4*2 =18
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Reminder (Cont’d)

 Fermat: If p is prime and a is positive integer not divisible by p, then
aP1=1 (modp)

Example: 11 is prime, 3 not divisible by 11, so 311 = 59049 = 1 (mod 11)

Euler: For every a and n that are relatively prime, then a2 = 1 mod n

Example: For a = 3, n = 10, which relatively prime: ¢(10) = 4, 3¢9 =34=81= 1 mod 10

Variant: for all ain Z *, and all non-negative k, a k*MW+1 = g mod n
n g

Example: forn=20,a=7, ¢(n) =8,and k = 3: 7 3"8*1 = 7 mod 20

Generalized Euler’s Theorem: for n = pq (p and q are distinct primes), all ain Z_,
and all non-negative k, a **(W*1 = a3 mod n

Example: forn=15,a=6, ¢(n) =8, and k =3: 6 381 =6 mod 15

XY mod n = xy mod (M) mod n

Example: x =5,y =7,n=6, ¢(6) =2, 5 mod 6 =57™9d2 mod 6 =5 mod 6
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Computing Modular Powers
Efficiently

* The repeated squaring algorithm for
computing a” (mod n)

* Let b, represent the it bit of b (total of k bits)
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Computing (Cont’d)

Algorithm modexp (a,b, n)

d =1;
for i k downto 1 do
(d * d) % n; /* square */
if (b, == 1)

d= (d * a) % n; /* step 2 */
endif
enddo

return d;

at each iteration, not just at end
Requires time oc k = logarithmic in b



Example

e Compute a?(mod n) = 7°°° mod 561 = 1 mod
561

step 2 — j

Q: Can some other result be used to compute this particular
example more easily? (Note: 561 = 3*11*17.)
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Exercise

* $(7)=7-1=6

© $(21) = d(3%7) = d(3)* D (7) =2 * 6 =12
* $(33) = (3*11) = $(3)*$ (11) =2 * 10=20

* (12) = d(3*4) = d(3)*d (29) = 2 *((2-1)*2*1) =4
e 2100 mod 33 = 2100 mod $(33) mod 33

= 2100 mod 20 11,5433 =20 mod 33 =1



Discrete Logarithms



Square Roots

* x is a non-trivial square root of 1 mod n if it
satisfies the equation x> =1 mod n, but x is
neither 1 nor -1 mod n

Ex: 6 is a square root of 1 mod 35 since 62 =1 mod 35

 Theorem: if there exists a non-trivial square
root of 1 mod n, then n is not a prime

— i.e., prime numbers will not have non-trivial
square roots
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Roots (Cont’d)

* If n=2%p,*1p,*2... p %, where p,...p, are distinct
primes > 2, then the number of square roots
(including trivial square roots) are:

— 2¢if o, <1

Example: forn=70=2t*51*7! 'a,=1, k=2, and
the number of square roots = 22 = 4 (1,29,41,69)

— 2k if oy =2

Example: forn=60=22*31*51 k=2,
the number of square roots = 23 = 8 (1,11,19,29,31,41,49,59)

— 22 if gy > 2

Example: forn=24=23*31 k=1,
the number of square roots = 23 = 8 (1,5,7,11,13,17,19,23)
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Primitive Roots
 Reminder: the highest possible order of
a (mod n) is ¢(n)

* If the order of a (mod n) is ¢(n), then a is
referred to as a primitive root of n

— for a prime number p, if a is a primitive root of p,
then a, a?, ..., a?* mod p are all distinct numbers

* No simple general formula to compute
primitive roots modulo n

— trying out all candidates
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Discrete Logarithms

* For a primitive root a of a number p, where
a' = b mod p, forsome 0 <j< p-1

— the exponent j is referred to as the index of b for
the base a (mod p), denoted as ind, ,(b)

— i is also referred to as the discrete logarithm of b
to the base a, mod p
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Logarithms (Cont’d)

 Example: 2 is a primitive root of 19.
The powers of 2 mod 19 =

Ind, 14 (b) =
log(b) base 2 mod 19 13 16 | 14

Given a, i, and p, computing b = a' mod p is straightforward
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Computing Discrete Logarithms

* However, given a, b, and p, computing i =
ind, ,(b) is difficult

— Used as the basis of some public key
cryptosystems
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Computing (Cont’d)
* Some properties of discrete logarithms

— ind, (1) = 0 because a®® mod p = 1 #(p), not p!

— ind, ,(a) =1 because a* mod p = a /

— ind, ,(yz) = (ind, ,(y) + ind, ,(z)) mod ¢(p)

Example: ind, 14(5*3) = (ind, 14(5) + Ind, 14(3)) mod 18 = 11

— ind, ,(y) = (rind, ,(y)) mod ¢(p)

Example: ind, ,4(3%) = (3*ind, 14(3)) mod 18 =
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More on Discrete Logarithms

x = a"o,p®) mod p, |Ex: 3=23mod 19

1) a™¥ap) mod p = (a'"dar*) mod p)(a™dery) mod p)
2) ainda’p(xy) mod p = (ainda’p(X)‘Hnda,p(y) ) mod p

3) by Euler’s theorem: a’=a% mod p iff z=q mod ¢(p)

Ex: 211 mod 19 =22°mod 19 < 11 =29 mod 18
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