
CIS 6930/4930 Computer and Network
Security

Topic 5.2 Public Key Cryptography

1

Public Key Cryptography

• Invented and published in 1975

• A public / private key pair is used
– public key can be announced to everyone

– private key is kept secret by the owner of the key

• Also known as asymmetric cryptography

• Much slower to compute than secret key cryptography

2

plaintext
encryption

ciphertext
decryption

plaintext

Public key Private key

different!

Applications of Public Key Crypto

3

Plaintext
Alice

Signs

Plaintext with

digital signature Bob

Verifies

Signature

Valid /

Not Valid

Alice’s Private Key Alice’s Public Key

1. Message integrity with digital signatures

Alice computes hash, signs with her private key (no one else

can do this without her key)

Bob verifies hash on receipt using Alice’s public key using the

verification equation

Applications (Cont’d)

• The digital signature is verifiable by anybody

• Only one person can sign the message: non-
repudiation

– Why is non-repudiation for a single party not
possible with secret key cryptography?

4

Applications (Cont’d)
2. Communicating securely over an insecure channel

– Alice encrypts plaintext using Bob’s public key, and Bob
decrypts ciphertext using his private key

– No one else can decrypt the message (because they don’t
have Bob’s private key)

5

Plaintext
Alice

Encrypts
Ciphertext Bob

Decrypts Plaintext

Bob’s Public Key Bob’s Private Key

Applications (Cont’d)
3. Secure storage

– Users encrypt data using the storage provider’s
public key

4. User Authentication

– Bob proves his identity to Alice by using his
private key to perform an operation (without
disclosing his private key)

– Alice verifies result using Bob’s public key

6

Public Key Algorithms
• Public key algorithms covered in this class, and their

applications

7

System Encryption /

Decryption?

Digital

Signatures?

Key

Exchange?

RSA Yes Yes Yes

Diffie-

Hellman

Yes

DSA Yes

Public-Key Requirements
• It must be computationally

– easy to generate a public / private key pair

– hard to determine the private key, given the public
key

• It must be computationally

– easy to encrypt using the public key

– easy to decrypt using the private key

– hard to recover the plaintext message from just
the ciphertext and the public key

8

Trapdoor One-Way Functions

• Trapdoor one-way function

– Y=fk(X): easy to compute if k and X are known

– X=f 1
k(Y): easy to compute if k and Y are known

– X=f 1
k(Y): hard if Y is known but k is unknown

• Goal of designing public-key algorithm is to
find appropriate trapdoor one-way function

9

The RSA Cipher

10

RSA (Rivest, Shamir, Adleman)
• The most popular public key method

– provides both public key encryption and digital
signatures

• Basis: factorization of large numbers is hard

• Variable key length (1024 bits or greater)

• Variable plaintext block size

– plaintext block size must be smaller than key size

– ciphertext block size is same as key size

11

Generating a Public/Private Key Pair

• Find large primes p and q

• Let n = p*q

• do not disclose p and q!

• (n) = ???

• Choose an e that is relatively prime to (n)

• public key = <e,n>

• Find d = multiplicative inverse of e mod (n) (i.e.,
e*d = 1 mod (n))

• private key = <d,n>

12

RSA Operations

• For plaintext message m and ciphertext c

13

Signing: s = md mod n, m < n

Verification: m = se mod n

Encryption: c = me mod n, m < n

Decryption: m = cd mod n

Proof (D(E(m)) = m)

• Given
– public key = <e, n> and private key = <d, n>

– n =p*q, (n) =(p-1)(q-1)

– e*d  1 mod (n)

• If encryption is c = me mod n, decryption…
 cd mod n

=(me)d mod n = med mod n

=m mod n (why?)

=m (why?)

• (digital signature proof is similar)

14

RSA Example: Encryption and Signing

• Choose p = 23, q = 11 (both primes)
– n = p*q = 253

– (n) = (p-1)(q-1) = 220

• Choose e = 39 (relatively prime to 220)
– public key = <39, 253>

• Find e-1 mod 220 = d = 79
(note: 39*79  1 mod 220)
– private key = <79, 253>

15

Example (Cont’d)

• Suppose plaintext m = 80

16

Encryption
c = 8039 mod 253 = 37 (c = me mod n)

Decryption
m = 3779 mod 253 = 80 (cd mod n)

Signing (in this case, for entire message m)
s = 8079 mod 253 = 224 (s = md mod n)

Verification
m = 22439 mod 253 = 80 (se mod n)

Using RSA for Key Negotiation

• Procedure

1. A sends random number R1 to B, encrypted with
B’s public key

2. B sends random number R2 to A, encrypted with
A’s public key

3. A and B both decrypt received messages using
their respective private keys

4. A and B both compute K = H(R1R2), and use
that as the shared key

17

Key Negotiation Example

• For Alice, e = 39, d = 79, n = 253

• For Bob, e = 23, d = 47, n = 589 (=19*31)

• Let R1 = 15, R2 = 55
1. Alice sends 306 = 15? mod ? to Bob

2. Bob sends 187 = 55? mod ? to Alice

3. Alice computes R2 = 55 = 187? mod ?

4. Bob computes R1 = 15 = 306? mod ?

5. A and B both compute K = H(R1R2), and use
that as the shared key

18

Is RSA Secure?

• <e,n> is public information

• If you could factor n into p*q, then

– could compute (n) =(p-1)(q-1)

– could compute d = e-1 mod (n)

– would know the private key <d,n>!

• But: factoring large integers is hard!

– classical problem worked on for centuries; no
known reliable, fast method

19

Security (Cont’d)

• At present, key sizes of 1024 bits are
considered to be secure, but 2048 bits is
better

• Tips for making n difficult to factor

1. p and q lengths should be similar (ex.: ~500 bits
each if key is 1024 bits)

2. both (p-1) and (q-1) should contain a “large”
prime factor

3. gcd(p-1, q-1) should be “small”

4. d should be larger than n1/4

20

21

Attacks Against RSA
• Brute force: try all possible private keys

– can be defeated by using a large enough key
space (e.g., 1024 bit keys or larger)

• Mathematical attacks

– factor n into the product of two primes

• possible for special cases of n

22

Attacks (Cont’d)
• Probable-message attack (using <e,n>)

– encrypt all possible plaintext messages

– try to find a match between the ciphertext and one of
the encrypted messages

– only works for small plaintext message sizes

• Solution: pad plaintext message with random text
before encryption (why random?)

• PKCS #1 v1 specifies this padding format:

0002 R1 R2 R3 R4 R5 R6 R7 R8 data…00

each 8 bits long

23

Timing Attacks Against RSA

• Recovers the private key from the running time of the
decryption algorithm

• Computing m = cd mod n using repeated
squaring algorithm:

d = 1;

for i = k downto 1 do

d = (d * d) % n; /* square */

if (bi == 1)

d = (d * a) % n; /* step 2 */

endif

end do

return d;

25

Timing Attacks (Cont’d)

The attack proceeds bit by bit
Attacker assumed to know c, m

Attacker is able to determine bit i of d because, the

highlighted step takes extra time if di = 1

26

Countermeasures to Timing Attacks

• Constant exponentiation time
• Don’t return the result if the computation is too fast.

• Hurt the performance.

• Random delay
• Confuse the timing attack by adding a random delay

• The attacker may be able to defeat random delay if the
delay is not added carefully.

