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Abstract—The security of Smart Grid, being one of the very
important aspects of the Smart Grid system, is studied in this
paper. We first discuss different pitfalls in the security of the
Smart Grid system considering the communication infrastructure
among the sensors, actuators, and control systems. Following
that, we derive a mathematical model of the system and propose
a robust security framework for power grid. To effectively
estimate the variables of a wide range of state processes in
the model, we adopt Kalman Filter in the framework. The
Kalman Filter estimates and system readings are then fed into
the χ

2-square detectors and the proposed Euclidean detectors,
which can detect various attacks and faults in the power system
including False Data Injection Attacks. The χ

2-detector is a
proven-effective exploratory method used with Kalman Filter for
the measurement of the relationship between dependent variables
and a series of predictor variables. The χ

2-detector can detect
system faults/attacks such as replay and DoS attacks. However,
the study shows that the χ

2-detector detectors are unable to
detect statistically derived False Data Injection Attacks while
the Euclidean distance metrics can identify such sophisticated
injection attacks.

I. INTRODUCTION

As one of the important infrastructural backbones, the se-

cluded power grid system is gradually being transformed into

a smart Cyber Physical System (CPS) having more embedded

intelligence and networking capability. In such a Smart Grid

system, cyber and physical components work in a complex

co-ordination to provide better performance and stability. In

specific, the Smart Grid is equipped with many sensors to

monitor various aspects of the grid such as the meter and

voltage fluctuations. The collected information from the sensor

networks can then help providing feedbacks or control com-

mands to the physical power grid devices. Hence, it involves

a two-way communication between the controller system and

the physical components. The Smart Grid system incorporates

the traditional security measures (e.g., intrusion detection and

firewall) to prevent rudimentary attacks in traditional data

networks. Most of the study in literature revolves around the

security of data communication from the physical components

to the central controller or among different elements (e.g.,

sensors and actuators) (e.g. [1–4]). The security measures dis-

cussed in these studies use the rudimentary techniques such as

intrusion detection [1], cryptography and authentication [2][3],

defense against network analysis [4], physical layer security

enhancement, and the utilization of recommendation based

social network infrastructure. These papers on the security of

data communication in Smart Grid, can roughly be catego-

rized into three groups. The work in the first category deals

mostly with the wired/wireless networking security among

cyber components in the Smart Grid [1–4]. The papers in

the second category are concerned with the early detection of

anomalies in the system. Smart Grid is a real time system and

faults/attacks must be handled as soon as possible, the early

anomaly detection schemes can pro-actively protect the system

[5][6]. The work in the third category applies the control

theories in the security process using various state estimation

and detection techniques [7] [8] [9].

An attack/fault in the Smart Grid system is always reflected

in the form of change in either voltage, current or phase, hence

the work in [7] proposed a control-theoretic adaptation frame-

work for the system level security of Smart Grid. The control-

theoretic framework uses the state estimation technique to

estimate the data from the remote terminal units and applies

power security analysis tools to detect attack on the system.

Similarly, the protection for the set of meter measurements

was discussed in [8] [9].

As stated in [4], the existing security approaches are either

i) not viable; ii) or incompatible with Smart Grid; iii) or not

appropriately scalable; iv) or not adequate. Particularly, the

existing techniques did not address the new class of attack

called False Data Injection Attack [10]. This type of injection

attack is undetectable by detectors used in the existing state-

estimation security frameworks [10],[11]. Hence, this work

presents a framework, based on a state space model derived

from the voltage flow equations, to defend different types of

attacks and faults including the False Data Injection Attack.

In addition, we show that the False Data Injection attack

cannot be detected using a traditional combination of estimator



and detector (i.e., KF and χ2-detector). Then, we propose a

different detector based on Euclidean distance metric to detect

the complicated False Data Injection Attack on the power grid

system.

The rest of the paper is organized as follows. Section II

describes the proposed framework, then derives the mathe-

matical model of the power grid system and discusses the

Kalman Filter estimator in the proposed framework. Section

III presents the two detectors implemented in the framework

in order to detect various attacks and failures in the system.

In Section IV, performance results of the proposed framework

and the observations are discussed. Finally, Section V presents

the conclusion and future work.

II. PROPOSED FRAMEWORK FOR SMART GRID USING

KALMAN FILTER

In this section, we present a security framework for Smart

Grid which can detect various attacks including random attack,

replay attack and DoS attack along with the powerful False

Data Injection Attack on the power system. The framework

utilizes Kalman Filter estimators to estimate state variables.

To apply the Kalman Filter (KF) technique, we have to

develop a state space model (as to shown in next section) from

the 3-phase sinusoidal voltage equations. The Kalman Filter

model estimates the values for the state variables based on

the reports from the numerous sensor readings and the past

state values. Without loss of generality, we assume the use

of voltage sensors to measure the state variables (amplitude

and phase of the voltage) in the framework. As stated in

[12], the sampling rate for the sensors should be around 16

samples per 60 Hz cycle, i.e. about 960 samples per second

for medium to low data rate production. Now, the estimated

values generated by KF and the observed values for the state

variables are fed into the detector as shown in Figure 1. The

detector compares the two state vectors (including all the state

variables) and if the two differ from each other significantly,

when the difference is above a certain precomputed threshold,

the detector triggers an alarm to signify a possible attack on

the Smart Grid. As the literature study shows, the χ2-detector

is a typical choice for the Kalman Filter estimators [13] when

the residue of the KF equations follows gaussian distribution

and g(t), (as in Equation (17, in Section III-A)) follows the

χ2 distribution [11]. However, False Data Injection Attacks

can bypass such detectors and may remain undetected [11].

Hence, we propose to use an additional detector, based on

the euclidean distance, along with χ2-detector. The Euclidean

distance detector reconstructs the sinusoidal voltage signal

from the state parameters and calculates the difference between

the estimated and observed voltage signals. If the difference

is larger than a precomputed threshold, the detector triggers

an alarm.

A. State Space Model

Meters or sensors such as PMUs that are able to measure

current phase and amplitude [14] are used in the power

system to measure the system state at various locations and

Fig. 1: Security framework for the Smart Grid system

time to ensure a smooth operation of the power system.

The measurements obtained from these meters/sensors are

the state variables that are reported to the central controller

via the wired/wireless communication infrastructure. As stated

in [10], the state variables include bus voltage, angles and

magnitudes. Furthermore, an attack or fault in the power

system is always reflected in the form of change in either

voltage, current or phase [7]. Without loss of generality, we

derive the state space model from the power grid voltage

signal.

The voltage signal can be represented as a sinusoidal wave

[15] as shown in Equation (1) 1. The equation represents

voltage as a function of amplitude (Av), angular frequency

wt and phase φ at discrete time.

V1(t) = Avsin(ωt+ φ) (1)

Equation (1) can be expanded as follows,

V1(t) = Av ∗ sinωt ∗ cosφ+Av ∗ cosωt ∗ sinφ (2)

Assuming the angular frequency is relatively constant over

time, we consider amplitude and phase as the variables in the

state space representation. The equation then becomes,

V1(t) = x1 ∗ sinωt+ x2 ∗ cosωt (3)

where, x1 = Av ∗ cosφ and x2 = Av ∗ sinφ are defined as

the state variables. Assuming there is no additional delay in

the system and considering random noise as well as small error

picked up by the system, we have Equation (4) representing

the state equation over the time.
[

x1(t+ 1)
x2(t+ 1)

]

=

[

1 0
0 1

] [

x1(t)
x2(t)

]

+ w(t) (4)

Equivalently,

x(t+ 1) =

[

1 0
0 1

]

x(t) + w(t) (5)

where, x(t) =

[

x1(t)
x2(t)

]

and w(t) represents the process

noise. Note both Av and φ are non-time-varying components

of the sinusoidal wave and the state variables and if any change

1The other two phases of the voltage signal can be similarly considered. For
simplicity we only consider Eq. (1) in the process of developing the model



is detected in these components, it signifies either attack or

fault in the system.

The actual voltage signal for the current state using non

stationary deterministic vector [sinωt cosωt] can be obtained

using Equation (2) and can be written as shown in Equation

(6), where v(t) represents the measurement noise.

y(t) = [sinωt cosωt]

[

x1(t)
x2(t)

]

+ v(t) (6)

B. Kalman Filter

In this section, we introduce the Kalman Filter [16] tech-

nique to obtain estimates for the state space vector x(t)
described in the above section. To apply the Kalman Filter

technique, the state equation can be written as,

x(t+ 1) = Ax(t) + w(t) (7)

where, A =

[

1 0
0 1

]

The observation equation for Kalman

Filter from Equation (6) can be written as:

y(t) = C(t)x(t) + v(t) (8)

Here, y(t) is the measurement vector collected from the

sensors, C(t) = [sinωt cosωt], v(t) is the measurement noise

which is independent of the initial conditions and process

noise. Both w(t) and v(t) are assumed to be white Gaussian

noise with zero mean and standard deviation σ.

Kalman Filter can then be applied to compute state estima-

tions x̂(t). Let the mean and covariance of the estimates be

defined as follows:

x̂(t|t) = E[x(t), y(0), ...., y(t)]

x̂(t|t− 1) = E[x(t), y(t), ...., y(t− 1)]

P (t|t− 1) = Σ(t|t− 1)

P (t|t) = Σ(t|t− 1) (9)

Here, x̂(t|t) is the estimate at time t using measurements up to

time t, x̂(t|t−1) is the estimate at time t using measurements

up to time t − 1. Similarly, P (t|t) is the covariance of the

estimates at time t using data up to time t and P (t|t − 1) is

the covariance of the estimates at time t using data up to time

t− 1. Now, the iterations of Kalman Filter can be written as:

Time Update:

x̂(t+ 1|t) = Ax̂(t) (10)

P (t|t− 1) = AP (t− 1)AT +Q (11)

The Equation (10) projects the state and covariance esti-

mates at t+1 time step from t time step. Here, A is obtained

from the state space model in Equation (4) and Q is the process

noise covariance matrix.

Measurement Update:

K(t) = P (t|t− 1)C(t)T (C(t)P (t|t− 1)C(t)T +R)−1

P (t|t) = P (t|t− 1)−K(t)C(t)P (t|t− 1)

x̂(t) = x̂(t|t− 1) +K(t)(y(t)− C(t)x̂(t|t− 1)) (12)

Equations (12) represents the measurement updates of the

Kalman Filter. K(t) is the Kalman gain and R is the mea-

surement noise covariance matrix. The last two formulae in

Equation (12) are used to generate a more accurate estimate

by incorporating the measurements y(t). The initial condition

is x(0| − 1) = 0, P (0| − 1) = Σ, [7].We assume that the

Kalman gain converges in a few steps and is in a steady state.

Finally, a training period is assumed such that the filter knows

the Kalman gain before the estimation, then,

P
∆
= lim

k→∞

P (t|t− 1),

K = PCT (CPCT +R)−1 (13)

Equation (12) can be further updated as:

x̂(t+ 1) = Ax̂(t) +K[y(t+ 1)− C(Ax̂(t))] (14)

The estimation error e(t) is defined as:

e(t)
∆
= x̂(t)− x(t) (15)

III. ATTACK/FAILURE DETECTOR

After the KF estimator calculates the next state of the system

and the sensors readings are available, the projected estimates

and the actual sensor readings are compared by the detector

to detect any disagreement. If the detector detects that the

difference between the two are significant, as dictated by a

precomputed threshold, it triggers an alarm for a possible

attack or failure. As discussed earlier, the framework proposed

in this paper implements two types of detectors: The χ2-

detector and the detector implementing the Euclidean distance

metric.

A. χ2-detector

The χ2-detector is a conventional detector used with

Kalman Filter. As described in [13] the χ2-detector detector

constructs a χ2 test statistics from the Kalman Filter and

compares them with a pre-computed threshold. Now, the

residue zk+1 at time k + 1 is defined as:

z(t+ 1)
∆
= y(t+ 1)− ŷ(t+ 1|t)

From Equation (8), (10) and (16), we get,

z(t+ 1)
∆
= y(t+ 1)− C(Ax̂(t)) (16)

Then, the χ2-detector test consists of comparing the scalar test

statistics given by:

g(t) = z(t)TB(t)z(t) (17)

Where, B(t) is the covariance matrix of z(t). The χ2 detector

compares g(t) with a precomputed threshold obtained using

the χ2-detector-table [13] to identify a failure or attack. The

χ2-detector for the Kalman Filter was first studied in [13].

χ2 test is long-term test because, at each detection step,

all integrated effects since system start time are considered.

This property makes it very useful for the fault detection in

Smart Grid which consists of sensors that are subject to soft

failures like instrument bias shift. Another advantage of χ2



detector is its computational straightforwardness. The param-

eters required to perform the test are already generated by the

Kalman Filter making it compatible with the KF. Furthermore,

the threshold for the detector can be easily obtained from

the χ2-table making the threshold computation relatively easy.

However, as mentioned previously, this detector fails to detect

False Data Injection attack on the sensors and thus is not

sufficient [11].

B. Detector implementing the Euclidean Distance Metrics

As can be seen from the simulations in the next section, the

χ2-detector fails when the adversary performs a False Data

Injection Attack on the Smart Grid system. The False Data

Injection Attack is a class of attack which is carefully crafted

to bypass the statistical detector like χ2-detectors. Hence,

we propose an Euclidean-based detector, which will calculate

the deviation of the observed data from the estimated data.

To apply the Euclidean detector, we need to reconstruct the

sinusoidal signals from the state estimates and compare them

with the measurements obtained from the sensors. As shown

in Equation (18), if the deviation is large enough, it means that

the system is under a possible attack or there are some faults

in the system. Without loss of generality, we assume that an

appropriate threshold is obtained using the data obtained in

the past when the system is functioning normally.

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 + .....+ (pn − qn)2

(18)

Since we are actually regenerating the signal to see how

much it deviates from what is expected/estimated, we can

detect attacks and faults that results from the manipulation

of the measured signal. Nonetheless, this approach can be

computation intensive in the process of reconstructing the

signal.

IV. IMPLEMENTATION AND PERFORMANCE EVALUATION

The Kalman Filter estimator, the χ2-detector and the Eu-

clidean distance metrics are implemented using Matlab. Table

I shows the experimental setup and the initial values. A 60Hz

Sinusoidal voltage signal with random Gaussian noise was

generated and fed to the Kalman Filter estimator as the input.

Matlab function randn() was used to produce normally dis-

tributed noise with mean value zero. The input signal and the

resulting sinusoidal signal obtained using the state estimates

are plotted in Figure 2-6. Each of these figures contain two

graphs and show the results of the simulation plotted against

time. The left sub graph shows how the amplitude varies with

time for the input sinusoidal signal and the signal constructed

using estimated state variables. In the second graph, the value

for g(t) from Equation (17) are plotted against time. The

straight horizontal line is the threshold obtained from the χ2

table. For the Euclidean detectors, d(p, q) from Equation (18)

is plotted against time.

A. Attack/Fault detection using χ2 detector

The simulation results, using χ2 detector, for a certain time

frame is shown in Figure 2. As seen in Figure 2, the estimated

TABLE I: Experimental setup

Frequency 60Hz
Amplitude 1 Volt

Sampling frequency 2 KHz
Initial value for x1(0) 0
Initial value for x2(0) 0

Initial covariance matrix P (0|0) Identity matrix

values obtained from the Kalman Filter estimator agrees with

the input signal when there are no attacks/faults. Hence the

value for g(t) obtained from the detector stays within the

threshold. Since our simulations also consider the random

noise in the system, there is a slight difference between the

estimates and the input signal at the beginning. As Kalman

Filter works iteratively by correcting its estimates using both

the state space model and the measurements obtained, the

estimates gradually converge with the input signal. Figure

Fig. 2: Simulation results without attack/fault

3 shows when there is a random attack on the system, the

estimated values do not correspond with the input signal and

g(t) exceeds the threshold. The detector triggers an alarm

signifying an attack/fault in the system. Similarly, short-timed

attack is also detectable as depicted in Figure 4. The replay

attack and DoS attack can also be detected in the similar

manner.

Fig. 3: Simulation results with a continuous random attack

Fig. 4: Simulation results when there is a random attack for a

short period of time

B. False Data Injection Attack

The generation of attack sequence for a CPS using Kalman

Filter is described in [17]. The attack sequence ensures that it



can by pass the detector and at the same time increase the error

in the state estimation. The second sub graph in Figure 5 shows

how the system behaves when the system is attacked using the

false data injection technique. We can see the estimates do not

agree with the measured values in the top sub graph in Figure

5. However, the g(t) curve never exceeds the threshold. In other

words, the statistical tests in χ2-detector fail in the detection

of such a False Data Injection Attack. In the next section, we

show that the proposed Euclidean Distance metric, Equation

(18) can identify such an attack by constantly monitoring the

difference between the estimated values and the measured

values.
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Fig. 5: False Data Injection Attack using χ2-detector and

Euclidean Detector

C. False Data Injection Attack detection using Euclidean

Distance Metric

For the detector implementing Euclidean distance metric,

we use Equation (18) to measure the deviation of the measured

data from the estimated data. Since the state variables only

consider the time-invariant components of a sinusoid the state

variables remain relatively constant. Hence, change in state

variables could mean either attack or fault in the system and

can be easily detected. However, to avoid false alarms due

to measurement or system errors, it is important to set a

proper threshold. As mentioned in Section II-B, the noise in

the system is considered white Gaussian with 0 mean and

standard deviation σ. To prevent the false positives due to noise

in the bus, we set the threshold to 3σ, σ being the standard

deviation of the noise from Section II-B. Due to the properties

of Gaussian distribution, this filters out 99.73% false positives

due to noise. Figure 6 shows the plot of the Euclidean Distance

metric when there is no attack in the system and the bottom

sub graph in Figure 5 shows the plot when there is a False

Data Injection Attack in the system. When there is an attack in

the system the difference between the two curves is large and

exceeds the threshold, hence the False Data Injection Attack

can be detected by the Euclidean distance metric.

V. CONCLUSION

A robust framework has been designed for the Smart Grid

system using Kalman Filter estimator together the χ2-detector

and Euclidean detectors. It has been shown that the χ2-detector

Fig. 6: Simulation results using Euclidean distance metric

when there is no attack

is efficient in detecting different types of faults and attacks

on the system such as replay and DOS attacks. However, the

χ2-detector fails to detect the False Data Injection Attack on

the system. Thus we have proposed to use Euclidean distance

metric to detect the False Data Injection Attack on the system.
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