
Wireless Communications under Broadband
Reactive Jamming Attacks
Song Fang, Yao Liu, and Peng Ning, Senior Member, IEEE

Abstract—A reactive jammer jams wireless channels only when target devices are transmitting; Compared to constant jamming,

reactive jamming is harder to track and compensate against [2], [38]. Frequency hopping spread spectrum (FHSS) and direct sequence

spread spectrum (DSSS) have been widely used as countermeasures against jamming attacks. However, both will fail if the jammer

jams all frequency channels or has high transmit power. In this paper, we propose an anti-jamming communication system that allows

communication in the presence of a broadband and high power reactive jammer. The proposed system transmits messages by

harnessing the reaction time of a reactive jammer. It does not assume a reactive jammer with limited spectrum coverage and transmit

power, and thus can be used in scenarios where traditional approaches fail. We develop a prototype of the proposed system using

GNURadio. Our experimental evaluation shows that when a powerful reactive jammer is present, the prototype still keeps

communication, whereas other schemes such as 802.11 DSSS fail completely.

Index Terms—Wireless communication, jamming attacks, reactive jammer, broadband

Ç

1 INTRODUCTION

JAMMING attacks are well-known threats to wireless com-
munication. A jammer uses a radio frequency (RF) device

to transmit wireless signals. Due to the shared nature of
wireless medium, signals of the jammer and the sender col-
lide at the receiver, and the signal reception process is dis-
rupted. Anti-jamming techniques have been extensively
studied and proposed in the literature over the past decades
(e.g., [7], [11], [16], [23], [26], [28], [41]). Frequency hopping
spread spectrum (FHSS) (e.g., [11], [33]) and direct sequence
spread spectrum (DSSS) (e.g., [19], [28]) are dominantly
used for the anti-jamming purpose.

In FHSS, the sender and the receiver switch their commu-
nication channels periodically to avoid being jammed. In
DSSS, the sender multiplies the original message with a
pseudo-random sequence to obtain the spreading gain. If
the jammer’s power is not strong enough to overwhelm the
DSSS signals with the spreading gain, the receiver can use
the same pseudo-random sequence to recover the message.

Although FHSS and DSSS techniques were developed
more than 30 years ago, until now these techniques and
their variants are all limited by a common assumption that
the jammer can only jam part of the communication chan-
nels or has limited transmit power. Unfortunately, if the
jammer is broadband (i.e., it can jam all channels simulta-
neously) or has a high transmit power to overcome the
spreading gain, these methods fail to maintain the anti-
jamming communication. Hence, it seems that a broadband

and high-power jammer is perfect and invincible. However,
when such a jammer adopts a reactive jamming strategy, a
closer examination on the jammer’s behavior reveals its
“Achilles Heel”.

Reactive jamming attacks are among the most effective
jamming attacks [2]. Compared to constant jamming,
reactive jamming is not only cost effective for the jammer,
but also hard to track and remove due to its intermittent
jamming behaviors [2]. To be reactive, a reactive jammer
“stays quiet when the channel is idle, but starts transmit-
ting a radio signal as soon as it senses activity on the
channel” [41]. Channel sensing causes a short delay. For
example, energy detection is the most popular channel
sensing approach with very small sensing time [13].
When implemented in a fully parallel pipelined FPGA for
fast speed [6], energy detection requires more than 1ms
to detect the existence of target signals for a 0.6 detection
probability and �110 dBm signal strength. In addition,
upon detecting the target signal, the jammer needs to
switch its status from quiet to transmitting. The switching
process further takes time. Therefore, before the jammer
actually jams, the sender has already transmitted
DtR bits, where Dt is the reaction time of the jammer and
R is the transmission rate of the sender.

This observation provides insights into designing coun-
termeasures to deal with the broadband and high-power
reactive jammers. It is easy for people to conceive that the
receiver may collect information bits from the unjammed
parts of received packets and try to assemble these bits
together to obtain a meaningful message. However, signifi
cant technical challenges exist to prevent this intuition from
being transformed into a real-world realization. For exam-
ple, transmission errors like lost or duplicate bits may hap-
pen when there exist jamming attacks or a retransmission
mechanism is employed. A small number of lost/duplicate
bits can make many bits mis-aligned, causing the failures in
reconstructing the original message.

� S. Fang and Y. Liu are with the Department of Computer Science and
Engineering, University of South Florida, Tampa, FL 33620.
E-mail: songf@mail.usf.edu, yliu@cse.usf.edu.

� P. Ning is with the Department of Computer Science, North Carolina State
University, Raleigh, NC 27695-8206. E-mail: pning@ncsu.edu.

Manuscript received 3 Apr. 2014; revised 31 Oct. 2014; accepted 28 Jan. 2015.
Date of publication 2 Feb. 2015; date of current version 18 May 2016.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TDSC.2015.2399304

394 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 3, MAY/JUNE 2016

1545-5971� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

In this paper, we aim to create techniques that can solve
the major challenges in utilizing the unjammed bits sur-
vived in the reaction time of a reactive jammer to establish
the anti-jamming communication. Based on the proposed
techniques, we implemented a real-world prototype anti-
jamming system, which can collect unjammed bits and
assemble them into an original message under the
broadband and high-power reactive jamming attacks.

Note that our goal is to raise the wireless communica-
tion from non-existence in extremely hostile environ-
ments (e.g., battlefield) to being available, rather than
support high-speed applications like video streaming in
benign environments. When FHSS and DSSS cannot
deliver a single bit, the proposed techniques can still
maintain the wireless communication.

The contribution of this paper is three-fold: (1) we devel-
oped novel techniques to harness the reaction time of a reac-
tive jammer for anti-jamming communication; (2) we
designed a communication system that integrates the pro-
posed techniques to enable information exchange between
wireless devices under broadband and high-power reactive
jamming attacks; (3) we implemented a prototype using the
USRP platform [20], and evaluated the performance on top
of the prototype implementation.

2 TECHNICAL CHALLENGES

To facilitate the readers’ understanding of the technical
challenges, we first describe a basic design of the sender for
achieving such an anti-jamming system. To transmit a mes-
sage, the sender may take a random backoff before each
transmission, as shown in Fig. 1. This makes it hard for the
reactive jammer to predict when the sender will start the
next transmission. The jammer may attempt to jam the com-
munication for longer time periods. However, this will
increase the chance for the reactive jammer to be detected
and removed. The sender transmits each bit of the message
for multiple times (e.g., three times in Fig. 1) to increase the
chance that the receiver receives this bit.

Note that there may exist other ways to design the
sender. For example, if the sender resides in the power
range of the jammer, the need of random backoffs can be
removed. Before each transmission, the sender may perform
channel sensing to determine whether or not the jammer is
transmitting. If not, the sender immediately sends bits with-
out waiting for the backoff time to expire, and hence the sys-
tem throughput can be greatly improved. Nevertheless, as
our initial investigation, we will focus on the basic design
that utilizes random backoffs and retransmissions.

Although the design of the sender can be simple and
straightforward, the design of the corresponding receiver is
difficult and complicated. To use the unjammed bits sur-
vived in the jammer’s reaction time to reconstruct an origi-
nal message, a receiver should have the following essential
capabilities as shown in Fig. 2. First, the receiver receives a

series of bits from the wireless channel. Among these
received bits, the receiver should be able to extract
unjammed bits that carry useful information about original
messages. Thus, the receiver needs to process each received
bit with a jamming detector, which checks if this bit is
jammed, and discard all jammed bits. Second, to assemble
unjammed bits into an original message, the receiver should
be able to achieve bit synchronization, i.e., to identify the
correct positions of received unjammed bits in an original
message. Accordingly, the receiver needs to feed the output
of the jamming detector to a bit synchronization decoder to
achieve this goal.

Finally, if a smart jammer knows that such an anti-
jamming system that collects unjammed bits for communi-
cation is being used, in addition to reactive jamming, the
jammer may try to defeat the system by transmitting fake
bits to the receiver when the sender is not transmitting.
These fake bits can mislead the receiver to incorrectly
decode a message. In this paper, we refer to such attacks as
pollution attacks. The receiver should be able to address pol-
lution attacks to make the decoding of the original message
feasible. Thus, the receiver needs to enforce defending tech-
niques against pollution attacks throughout the communi-
cation. However, there exist significant technical challenges
in achieving these essential capabilities:

� Detecting jammed bits. Traditional jamming detection
aims to find out if wireless communication is
jammed (e.g., [32], [41]). To detect jamming, a
receiver usually analyzes received signal samples to
obtain statistical values like packet loss rate and bit
error rate. These values enable the receiver to make a
decision regarding whether or not the communica-
tion system is under jamming attacks. However, tra-
ditional techniques cannot be directly applied to
achieve anti-jamming systems that reconstruct mes-
sages by assembling unjammed bits together,
because in such systems the receiver needs to distin-
guish jammed bits from unjammed bits rather than
merely detecting the existence of jamming. There-
fore, reliable jamming detection techniques that can
identify unjammed bits should be created to realize
such anti-jamming systems.

� Bit synchronization. Bit synchronization errors will
prevent the receiver from correctly assembling the
unjammed bits from the sender into an original mes-
sage. Bit synchronization errors are mainly caused
by lost, duplicated, and inserted bits. A bit of the
sender’s original message may get lost when it is
jammed by the jammer. Also, if the sender transmits
each bit of a message for multiple times, the receiver
will receive extra bits. With the presence of lost and
extra bits, the receiver cannot know the correct posi-
tions of received unjammed bits in the original mes-
sage, and thus it fails to recover this message.
Therefore, techniques should be created to establish
the correct bit synchronization between the sender
and the receiver in the presence of bit synchroniza-
tion errors.

� Dealing with pollution attacks. One possible way to
distinguish the sender’s bits from the jammer’s fake

Fig. 1. Sender design.

FANG ETAL.: WIRELESS COMMUNICATIONS UNDER BROADBAND REACTIVE JAMMING ATTACKS 395

bits is to use existing physical layer fingerprinting
techniques such as radio-metrics (e.g., [5]) and radio
frequency fingerprints (e.g., [22], [43]). However,
recent research discoveries (e.g., [10], [18]) reveal
that physical layer fingerprinting techniques are vul-
nerable to certain security threats (e.g., mimicry
attacks [18]), and it has been demonstrated that an
attacker can easily forge physical layer fingerprints
to impersonate a target wireless device (e.g., [10],
[18]). Thus, secure and reliable countermeasures
against pollution attacks should be designed to
make the use of unjammed bits for anti-jamming
communication feasible.

In what follows, we present the proposed techniques to
deal with these challenges. We made the following clarifica-
tions of the jammer. First, a general reactive jammer jams
the channel when it detects the sender’s transmission and
stops jamming when the sender ends transmission. In this
paper, however, we assume a more challenging reactive
jammer model with unpredictable jamming behavior, i.e.,
the jammer jams the channel when it detects the sender’s
transmission, but after the sender stops transmission,
instead of immediately stopping, the jammer chooses a ran-
dom value d (d � 0), and lasts jamming for d second(s).

Second, multiple jammers may collaborate to jam the
communication channel. The impact of these jammers can
be reduced to that of one jammer. Specifically, if the jam-
mers take turns to jam the channel in a seamless way (i.e.,
all time slots are jammed), then the jamming impact is simi-
lar to that caused by one constant jammer. If the jammers
take turns to jam the channel in an unseamless way (i.e.,
some time slots are not jammed), then the jamming impact
is similar to that caused by one random jammer who jams
the channel at a random time and lasts jamming for a ran-
dom duration. For a constant jammer that jams all channels,
overwhelms the spreading gain, and never stops, no exist-
ing methods can be used to beat such a jammer. Localiza-
tion or social engineering approaches might be used to
physically find the jammers so that they can be disabled.
However, as long as unjammed time slots exist, the pro-
posed techniques can decode bits received during the
unjammed time slots into a meaningful message. The details
are shown below.

3 DETECTION OF (UN)JAMMED BITS

In this section, we develop a novel technique that utilizes
physical layer modulation properties to identify (un)
jammed bits.

3.1 Preliminaries on Modulation

I/Q modulation has been widely used in modern wireless
systems, including WCDMA, WiMax, ZigBee, WiFi, and
digital video broadcasting (DVB). I/Q modulation encodes
data bits into physical layer symbols, which are the

transmission units in the physical layer. In the following, we
use quadrature phase-shift keying (QPSK)modulation, a typ-
ical I/Qmodulation, to illustrate how I/Qmodulationworks.

QPSK—An example I/Q modulation. QPSK encodes 2 bits
into one symbol at a time. In Fig. 3, bits 00, 01, 10, and 11 are
represented by points whose coordinates are ð0; 1Þ, ð�1; 0Þ,
ð0;�1Þ, and ð1; 0Þ in an I/Q plane, respectively. The I/Q
plane is called a constellation diagram. A symbol is the coordi-
nate of a point in the constellation diagram. For a bit
sequence 0010, the modulation output are two symbols:
ð0; 1Þ and ð0;�1Þ. A received symbol is not exactly the same
as the original symbol sent by the sender, since wireless
channels usually introduce noise to signals that pass through
them [11]. To demodulate, the receiver finds the point that is
closest to the received symbol in the constellation diagram.
For example, in Fig. 3, the point closest to the received sym-
bol is (0, 1). Thus, the demodulation output is 00.

3.2 Observation

Intuitively, jamming signals can introduce a large distortion
to signals transmitted by the sender, since the goal of the
jammer is to corrupt the signals. If a received symbol is
jammed, it may greatly deviate from its ideal point in the
constellation diagram and can hardly be recovered. To get
more insights in this process, we perform experiments to
examine the impacts of jamming on symbol locations.

We collect the received symbols using USRPs [20], which
are radio frequency front ends equipped with analog to dig-
ital (AD) and digital to analog (DA) converters. In our
experiments, three USRPs are used as the sender, the
receiver, and the jammer, respectively, each of which is con-
nected to a computer. Automatic gain control (AGC) is
employed by USRPs. We set the bit rate as 1 Mbps, carrier
frequency as 5 GHz, and modulator as QPSK.

We consider a normal scenario and a jamming scenario.
In the first one, only the sender transmits randomly gener-
ated packets to the receiver, while in the second one, both
the sender and the jammer transmit random packets to the
receiver concurrently. The receiver record the coordinates
of the received symbols in the constellation diagram.

In the normal scenario, as shown in Fig. 4, the received
symbols form four clusters, each of which centers around
an ideal point of QPSK. However, in the jamming scenario,
as shown in Fig. 5, the received symbols randomly spread
over the constellation diagram. Thus, it is hard to identify
the ideal points for the received symbols, and demodulation
errors may happen frequently.

3.3 Detection Method

Let dunjam (or djam) be the distance between an unjammed
(or a jammed) symbol and the origin in the constellation

Fig. 2. Receiver design.

Fig. 3. QPSK modulation/demodulation.

396 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 3, MAY/JUNE 2016

diagram. As shown in the above experiment, unjammed
symbols are close to their ideal constellation points, and
thus dunjam approximately equals to the distance between
an ideal point and the origin. In contrast, jammed symbols
deviate from their ideal points. Due to AGC, such deviation
is actually a convergence from ideal points toward the ori-
gin rather than an expansion out of the constellation dia-
gram range. Hence, unlike unjammed symbols, jammed
symbols are randomly distributed within the constellation
diagram, and the expected value of djam is smaller than that
of dunjam. For example, in Figs. 4 and 5, the average distance
between a received symbol and the origin is 2.2524 and
1.2628, respectively.

We propose to use the distance d between a received
symbol and the origin of the constellation diagram as a met-
ric to detect the existence of jammed symbols. For each
received symbol, we compute the corresponding distance d,
and compare dwith a threshold t. If d > t, the received sym-
bol is marked as unjammed. Otherwise, it is jammed and
we discard it.

Note that different metrics can be explored to accom-
modate different variants of I/Q modulation. For exam-
ple, rectangular based I/Q modulation (e.g., 64 QAM)
may use the distance between a received symbol and the
closest constellation point as the detection metric. We
choose the metric dunjam (or djam) due to its simplicity.
This metric serves as an example to illustrate how our
observation can be utilized for detecting jammed and
unjammed symbols.

The detection accuracy can be enhanced by using the
temporal correlation of adjacent symbols. Let si and di
denote the ith received symbol and its distance from the
origin, respectively. We determine whether si is jammed
or not by examining it along with its neighbor symbols
si�N; . . . ; si�1; si; siþ1; . . . ; siþN , where N is system parame-
ter. Symbol si is marked as unjammed, if all symbols in
this sequence have distances larger than the threshold.
As we will show below, this method can enhance the
detection accuracy.

3.4 False Positives (FPs) and False Negatives (FNs)

False positives and false negatives are two types of errors
that may happen in the detection. In a false positive, dunjam
of at least one symbol in the temporal sequence is less than
or equal to t, and thus an unjammed symbol is incorrectly
classified as a jammed symbol. In a false negative, djam of all
symbols in the temporal sequences are larger than t, and
thus a jammed symbol is incorrectly classified as an
unjammed symbol. In Theorems 1 and 2 we derive both
probabilities of false negative and positive.

Theorem 1 (Probability of false positive). The probability Pfp

that an unjammed symbol is classified as a jammed symbol is

1� ðM1ð v
sN

; t
sN
ÞÞ2Nþ1, where M1 is the Marcum Q-function,

v is the distance between an ideal point and the origin of the
constellation diagram, t is the threshold, 2N þ 1 is the length

of the temporal sequence, and sN
2 is the variance of the

jamming signal.

Proof: Let ðI;QÞ and ðIi; QiÞ denote the coordinate of a
received symbol and its closest ideal point in a constella-
tion diagram, respectively. Due to jamming, I 6¼ Ii and
Q 6¼ Qi. For an unjammed symbol, we assume additive
white Gaussian noise, and thus I and Q can be repre-
sented as I ¼ Ii þ dI and Q ¼ Qi þ dQ, where dI and dQ
are independent and identically distributed (i.i.d) Gauss-
ian random variables with mean value 0 and variance

sN
2. According to the properties of Gaussian variables

[21], I ¼ Ii þ dI and Q ¼ Qi þ dQ are also i.i.d. Gaussian
random variables. The mean values of I and Q equal to
those of Ii and Qi, respectively, and the variances of

them are all sN
2. Let d denote the distance between the

received symbol and the origin of the constellation dia-

gram. Thus, d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 þQ2

p
. According to [24], d follows

Rice distribution and the cumulative distribution func-

tion FdðtÞ of d is FdðtÞ ¼ Pðd � tÞ ¼ 1�M1ð v
sN

; t
sN
Þ, where

Pðd � tÞ denote the probability that d is less than or equal

to t, v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ii

2 þQi
2

p
, and M1 is the Marcum Q-function.

Note that the probability Pfp of false positive equals to
the probability that d of at least one symbol in the tempo-
ral sequence is less than or equal to t. Thus, Pfp ¼
1� ð1� Pðd � tÞÞ2Nþ1 ¼ 1� ðM1ð v

sN
; t
sN
ÞÞ2Nþ1. tu

Theorem 2 (Probability of false negative). Given that each
ideal point in the constellation is jammed with equal probabil-
ity, the probability Pfn that a jammed symbol is classified as an

unjammed symbol is ðe
�t2

2s2 Þ2Nþ1, where t is the threshold,

2N þ 1 is the length of the temporal sequence, and s2 is the
variance of the I/Q coordinate of a received symbol.

Proof: Let ðI;QÞ denote the coordinate of a received symbol.
I and Q can be represented as I ¼ Is þ Ij þ dI and
Q ¼ Qs þQj þ dQ, where (Is, Qs) and (Ij, Qj) are the
symbols transmitted by the sender and the jammer,
respectively, and dI and dQ are additive white Gaussian
noise. Assume that the sender transmits each ideal point
in the constellation diagram with equal probability.
Hence, Is, Qs, Ij, Qj are i.i.d random variables. According
to central limit theorem, the probability distribution of
the average of i.i.d random variables converges to

Fig. 4. Normal scenario. Fig. 5. Jamming scenario.

FANG ETAL.: WIRELESS COMMUNICATIONS UNDER BROADBAND REACTIVE JAMMING ATTACKS 397

Gaussian distribution as the number of random variables
increases. Therefore, we use Gaussian distribution to
approximate the distribution of ðIs þ IjÞ=2 and
ðQs þQjÞ=2. According to the properties of Gaussian
variables [21], I ¼ Is þ Ij þ dI and Q ¼ Qs þQj þ dQ are
also approximately Gaussian distributed, where dI and
dQ are i.i.d Gaussian random variables with mean 0. Ideal
points center around the origin, and thus the mean val-
ues of Is, Qs, Ij, and Qj are 0.

Let d denote the distance between the received symbol
and the origin of the constellation diagram. Thus,

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 þQ2

p
. Assume that I and Q have the same vari-

ance, which is denoted by s2. According to [11], d follows
Rayleigh distribution and the cumulative distribution

function FdðtÞ of d is FdðtÞ ¼ Pðd � tÞ ¼ 1� e
�t2

2s2 . The
probability Pfn of false negative equals to the probability
that d of all symbols in the temporal sequence are larger

than t. Therefore, Pfn ¼ ð1� Pðd � tÞÞ2Nþ1 ¼ ðe
�t2

2s2 Þ2Nþ1. tu

Experimental validation. To verify the theoretical results,
we run the temporal check enhanced method to detect
unjammed symbols from symbols collected for normal
and jamming scenarios in our earlier experiment. The
measured false positive probability Pfp and false negative

probability Pfn are computed by Pfp ¼ 1� #detected symbols
#total symbols

and Pfn ¼ #detected symbols
#total symbols , respectively. Meanwhile, we

compute Pfp and Pfn using Theorems 1 and 2. The com-
putation results are shown in Figs. 6 and 7. Note that sta-
tistic parameters v, sN , and s are determined based on
our earlier experiment.1 Both theoretical and real mea-
sured results are in close consistency. A large N can
result in both small Pfn and Pfp. When N ¼ 1, both real
measured Pfn and Pfp can be as low as 0:0444 by using a
threshold t that equals to 1:6. If we increase N to 3, we
can achieve even lower error rate.

3.5 Determining the Threshold

The threshold t can be determined based on the system
requirement for Pfn and Pfp. For example, if the false nega-
tive probability Pfn is required to be less than a, we have

ðe
�t2

2s2 Þ2Nþ1 < a. By treating t as an unknown and solve the

inequality, we can get t >
ffi
2s2 lna2Nþ1

p
. As the threshold t

increases, Pfp increases but Pfn decreases. If the goal is to
minimize both Pfp and Pfn, as shown in Figs. 6 and 7, the

minimization result and the corresponding t form the inter-
section point of the Pfp and Pfn curves.

In practice, the receiver may use the heuristic search to
determine an appropriate threshold that achieves the
desired performance in a self-adaptive way. Specifically,
under the jamming attacks, a high bit error rate is more
likely to be caused by a high false negative rate and hence
a small threshold, whereas a low throughput is more
likely to be caused by a high false alarm rate and hence a
large threshold. Based on the observation of the bit error
rate and the throughput, the receiver can adjust the
threshold until a desired performance is achieved. To
improve the efficiency, the adjudication process can be
further implemented using the binary exponential backoff
algorithm, which has been widely employed by the com-
puter network design. The receiver may multiplicatively
decrease or increase the current threshold to gradually
find an acceptable value.

4 BIT SYNCHRONIZATION

The original message is first encoded with a traditional ECC
(e.g., Reed-Solomon (RS) codes). ECC corrects substitution
errors (i.e., bit “1” is replaced by “0” and vice-versa). The
proposed bit synchronization encoding scheme further enc-
odes the ECC-coded message to allow a receiver to decode
the correct positions of received bits and recover from syn-
chronization errors.

4.1 Basic Idea

Bit synchronization encoding. The sender and the receiver
agree on a sequence that is formed by n integers, where n is
the length of the message (a long message may be spited
into several short messages of n bits). We call such an inte-
ger sequence a positioning code and each integer in the
sequence a label. As shown in Fig. 8, the message is 10110
and the positioning code is 03572. For 1 � i � 5, the sender
labels the ith bit of the message using the ith label in the
positioning code (e.g., the second bit is 0 and its label is 3).
In the labeling, the sender uses one symbol to represent
both a bit and its label. (Details of labeling will be presented
in Section 4.2.) Note that a symbol is the transmission unit
of physical layer. Once a receiver receives a symbol, the

Fig. 6. Theoretical/measured probability of false positive/negative when
N ¼ 1.

Fig. 7. Theoretical/measured probability of false positive/negative when
N ¼ 3.

Fig. 8. Bit synchronization encoding at the sender.1. v ¼ 2:3949, sN ¼ 0:3838, and s ¼ 1:0344:

398 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 3, MAY/JUNE 2016

receiver knows both the bit and its label. The encoding
results are shown in Fig. 8.

Transmission errors. After encoding, the sender transmits
each symbol for multiple times. As an example shown in
Fig. 9, the sender transmits the first symbol for three times
in the first transmission, and transmits this symbol again for
three times in the second transmission. The sender repeats
its transmission until the last symbol is transmitted. Due to
jamming and retransmissions, a symbol may get lost or
duplicated. Also, channel noise may introduce a small num-
ber of incorrectly demodulated symbols, and thus extra
inserted symbols can be resulted. Fig. 9 shows an example
of bit synchronization errors, all copies of the second sym-
bol in the original message are lost, the third received sym-
bol is an extra inserted symbol caused by the incorrect
demodulation of a retransmitted unjammed symbol (the
original unjammed symbol of “1,5” is incorrectly demodu-
lated as “1,2”), and the fourth and fifth received symbols
are duplications of each other.

Bit synchronization decoding. The receiver demodulates
each received symbol to extract the bit and corresponding
label carried by this symbol. Fig. 10 shows an example fol-
lowing Fig. 9. The extracted bits and labels are 111110 and
052772, respectively. The receiver then takes two steps to
correct synchronization errors.

The first step is merging, in which bits are merged into a
single bit if they are identical and have the same label. As
shown in Fig. 10, the fourth and the fifth received bit are
identical (i.e., both of them are 1), and have the same label 7.
Thus, they are merged together. The merging result is 11110
and the corresponding labels are 05272. An incorrect merg-
ing may happen if multiple bits in the BTmessage are identi-
cal and use the same label. In Section 4.3, we give the
analytical upper bound of the error probability, and show
that the upper bound decreases quickly as configurable
parameters such as the number of retransmissions
increases. The second step is alignment, which consists of
two substeps:

(1) Dealing with false negatives. Although most unjammed
symbols can be correctly demodulated by the existing
demodulation techniques, the demodulation of a small
amount of them may be incorrect due to the channel
noise. These wrong symbols are actually random incoher-
ent pieces and the correlation between their labels and
the positioning code is weak. Therefore, to filter out
inserted bits, we perform alignment on the most corre-
lated part between the positioning code and the merged
received labels. We find the largest common subsequence
(LCS) between the positioning code and received labels,
and align the LCS with the positioning code. For example,
in Fig. 10, the received labels are 05272, where the
underlined 2 is the inserted label from the jammer. The

LCS between 05272 and the positioning code 03572 is
0572. Thus, the inserted label is filtered.

LCS is not necessarily unique. Finding all LCSs requires
exponential time complexity in the worst case, whereas
finding one LCS is solvable in polynomial time by dynamic
programming [9]. Therefore, we utilize existing dynamic
programming method to only find one LCS. It is possible
that there exist multiple LCSs and the LCS returned by
dynamic programming contains inserted labels. However,
as shown in the appendix of [17], such probability decreases
quickly with the increase of the percentage of the sender’s
labels. Since incorrect demodulations are rare events, the
sender’s labels comprise the great majority of total received
labels, and thus there is a high chance that the sender’s
labels form the LCS of received labels and positioning code.
Retransmissions further increase this chance. For example,
the sender may transmit a message for 3 times. For each
transmission, the receiver can obtain a LCS. Given a 0.1
probability that a LCS contains inserted bits, the chance that
at least one LCS does not contain inserted bits is 0.999.

(2) Generating alignment output. In the LCS 0572, the labels
0, 5, 7, and 2 match the first, third, fourth, and the last label
in the positioning code, respectively. Thus, the receiver
knows that the second bit is lost, and corrects synchroniza-
tion errors by filling a bit that can be either 1 or 0 in the posi-
tion shown in Fig. 10. The alignment output is further
processed by traditional ECC to recover the original mes-
sage. There may exist multiple alignment outputs. In
Section 4.3, we develop a fast alignment approach that not
only achieves desired alignment accuracy, but also reduces
the overhead by only trying a subset of all combinations.

Diversity degree of a positioning code. To avoid incorrect
merging/alignment, we require that consecutive labels in
the positioning code to be different. Specifically, the i-th
label in the positioning code does not equal to any of its pre-
vious d labels (i.e., i� 1 th,..., i� d th label) and successive d
labels (i.e., iþ 1 th, ..., iþ dth label), where d � 1 is an
adjustable parameter, referred to as diversity degree of the
positioning code. For example, when diversity degree is 2,
the eigth label should not be the same as the seventh, sixth,
ninth and 10th label.

4.2 Encoding at Sender

The sender adds special data content (e.g., 11111) to both the
beginning and the end of a message, so that a receiver can
recognize the boundary of a message. We refer to the special
data content as a message delimitation code (MDC).

Afterwards, the sender labels the ith bit of the message
by packing the ith bit and the ith label of the positioning
code into one physical layer symbol. For example,
assume that ith bit is 1 and its label is 2. The sender appends
10 (i.e, binary form of 2) to the data bit 1, and the result is
110, which are modulated into one symbol (e.g., a 8PSK
symbol). To improve efficiency, bits in the MDC are not
labeled. For an M-ary modulator that encodes log2M bits by

Fig. 9. Bit synchronization errors.

Fig. 10. Bit synchronization decoding at the receiver.

FANG ETAL.: WIRELESS COMMUNICATIONS UNDER BROADBAND REACTIVE JAMMING ATTACKS 399

one symbol, the maximum value of a label of the positioning

code should be 2log2 M�1 � 1 ¼ M
2 � 1. For example, an 8PSK

symbol uses 1 bit to carry data information and 2 bits to
carry the label. Hence, a label is less than or equal to 3 (i.e.,
11). Packing a data bit and its label in one symbol achieves
atomicity: data bits are always associated with their labels.
Upon receiving a symbol, the receiver knows both the data
bit and its label.

4.3 Decoding at Receiver

Before decoding, the receiver searches for boundaries of a
message. The boundary of the message is identified if the
receiver can observe an MDC or a certain data pattern that
is a part of MDC. For example, assume that the MDC equals
to 1111111, the receiver identifies the beginning or end of a
message if the receiver receives 1111111, multiple consecu-
tive 1’s (e.g., 1111), or multiple consecutive 1’s interleaved
with quite a few 0’s (e.g., 1110111). The third condition deals
with bits inserted by false negatives.

To reduces the chances that the entire MDC is jammed,
the sender and the receiver can increase the length of the
MDC according to the severity of jamming attacks, so that
the receiver can observe at least a part of the MDC. Alterna-
tively, they may take a backoff time between transmitting
two consecutive symbols of an MDC.

The receiver then demodulates the symbols of the
received message, extracts a data bit and a label from
each symbol, and takes two steps to correct synchroniza-
tion errors.

Merging. Bits are identified as duplicated and merged
into a single bit if they are consecutive, identical and have
the same label. To detect and merge duplicated bits, the
receiver points a cursor to the first bit/label of the received
message. Then, the receiver compares the bit/label pointed
by the cursor and each of the following Nr � 1 bits/labels,
where Nr denote the number of retransmissions for a single
bit. If inequality occur (e.g, two bits are not equal or have
different labels), the receiver merges all equal bits/labels
together and points the cursor to the next bit/label. The
receiver repeats until all bits/labels of the received message
are scanned.

Merging errors. Different bits may be incorrectly merged
together, introducing extra lost bits. We first give Lemma 1,
based on which we then derive the upper bound of the
probability of merging errors in Theorem 3.

Lemma 1. The probability that two labels in a positioning code
equal to each other is less than or equal to 1

R�d, where d is the
diversity degree of the positioning code and R is the number of
possible values for each label (e.g., R ¼ 4 for 8PSK).

Proof. Let S ¼ s1jj:::jjsn denote the positioning code, where
n is the number of labels in it. Let peq denote the probabil-
ity that the ith label si equals to the jth label sj, where
1 � i; j � n and i 6¼ j. Without loss of generality, we
assume that j > i. According to the diversity require-
ment of a positioning code (See Section 4.1), sj 6¼
sj�1; . . . ; sj�d and si 6¼ siþ1; . . . ; siþd. If j� i � d, sj is one
of the previous d labels of si. Hence, peq ¼ 0. If
j� i ¼ dþ 1, sj’s previous d labels are actually si’s
successive d labels, and thus sj 6¼ sj�1; . . . ; sj�d and

si 6¼ sj�1; . . . ; sj�d. Therefore, pe ¼ 1
R�d. If dþ 1 < j� i �

2d, there exists an overlap between sj’s previous d labels
and si’s successive d labels, but the length of the overlap

is less than d. Thus, pe <
1

R�d. If j� i > 2d, there is no

overlap and pe ¼ 1
R. Thus, pe is at most 1

R�d. tu

Theorem 3 (Probability of merging errors). The probability
pe that a received message is merged incorrectly is less than

1� ð1� prd�prðn�nð1�prÞþ1Þ
2ðR�dÞ Þnð1�prÞ�1, where n is the length of a

positioning code, R is the number of possible values for each
label, r is the number of retransmissions for each bit in the mes-
sage, d is the diversity degree of the positioning code, and p is
the probability that a bit transmitted is lost.

Proof. Let S ¼ s1jj:::jjsn and M ¼ m1jj:::jjmn denote the
positioning code and original message, respectively. Let

Mr ¼ m
r1
i1
jj:::jjmrg

ig
denote the received message, where

mij is the ijth element of the original message and m
rj
ij

means that the receiver receives rj retransmitted copies

of mij . m
rj
ij
may be incorrectly merged with m

rjþ1
ijþ1

if they

are identical and have the same label (i.e., mij ¼ mijþ1

and sij ¼ sijþ1
).

An information bit (i.e., a bit in the original message
and all its retransmitted copies) may get lost. Let p
denote the probability that a transmitted bit is lost. The
probability that an information bit is lost equals to pr,
where r is the number of retransmissions. If ijþ1 � ij � d

(i.e., less than d information bits between mijþ1
and mij

are lost), thenmijþ1
is among the successive d elements of

mij and their labels are always different. Thus, the proba-

bility of merging errors is 0. If ijþ1 � ij > d, m
rj
ij
andm

rjþ1
ijþ1

will be identified as duplicate bits when mij ¼ mijþ1
and

sij ¼ sijþ1
. Let peq be the probability that the i-th element

si equals to the j-th element sj, where 1 � i; j � n and

i 6¼ j. The overall probability pej that m
rj
ij

is incorrectly

merged with m
rjþ1
ijþ1

is
peq
2 Pðijþ1 � ij > dÞ ¼ peq

2

Pn�nð1�prÞ
k¼d

prkð1� prÞ. According to Lemma 1, peq � 1
ðR�dÞ. Therefore,

pej �
ðprd�prðn�nð1�prÞþ1ÞÞ

2ðR�dÞ , where nð1� prÞ is the expected

number of information bits received by the receiver. For

the received message Mr ¼ m
r1
i1
jj:::jjmrg

ig
, the probability

pe of merging incorrectly is 1�
Qj¼nð1�prÞ�1

j¼1 ð1� pejÞ, and
thus pe � 1� ð1� prd�prðn�nð1�prÞþ1Þ

2ðR�dÞ Þnð1�prÞ�1. tu

We use simulations to validate the analytical upper
bound. All simulations are done in MATLAB 7.7.0. We let
R ¼ 32 and p ¼ 0:95, and perform 10,000 trails. In each
trial, we randomly generate a message and a positioning
code of length 155, and label the message using the posi-
tioning code. We retransmit each bit of the message for r
times (10 � r � 30), and delete each retransmitted bit
with probability p. We then merge the remaining bits,
and compare the result with the correct result obtained
based on the original generated message. If both results
are not equal, a merging error happens and we mark this
trial as failed. We compute the simulated probability of

400 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 3, MAY/JUNE 2016

merging error and its analytical upper bound using

(#failed trials
#total trials) and Theorem 3, respectively.

As shown in Fig. 11, the simulated probability is only
slightly less than its analytical upper bound, which indi-
cates that the result Theorem 3 is a tight upper bound. A
larger diversity degree d can achieve smaller error probabil-
ity. As the number r of retransmissions increases, both the
simulated probability and its upper bound decrease and
approach to 0. In particular, when d ¼ 8 and r ¼ 20, the sim-
ulated probability and the analytical upper bound are
0.0005 and 0.0006.

Merging errors will generate additional lost bits during
message recovery. In the following, we develop a method to
recover lost bits through alignment and ECC.

Alignment. The goal of alignment is to find the actual
position of each received bit in the original BTmessage. Let
S denote the positioning code and L the merged labels (e.g.,
in Fig. 10, the merged labels are 0572).

(1) Basic alignment method. If the length of the positioning
code is small, we can do alignment in a brute force way.
Specifically, assume that the length of L is q. The receiver
can find all length-q subsequences of S, and compare each
of them with L. For each subsequence that equals to L, the
receiver generates an alignment output by padding 1’s or
0’s into the positions of lost bits. For example, assume that
padding bits are 1’s and the received message after merging
is 00. For L ¼ 17 and S ¼ 1;317, the alignment outputs are
0110 and 1100. Each alignment output is further processed
by traditional ECC decoding, where replacement errors
(i.e., 1 ! 0 or 0 ! 1) are corrected. Since there may exist
multiple alignment outputs, the receiver may obtain multi-
ple decoding results, among which the one that can pass
cyclic redundancy check (CRC) or authentication is the
recovered message. If the length of S is large, this method is
time consuming. We develop a fast alignment approach
below to reduce the overhead.

(2) A fast alignment method. To achieve fast alignment,
we propose to only find one alignment. We further show
that given proper configurations, this single alignment
leads to a very small error probability. We use a simple
greedy strategy to obtain a single alignment. Specifically,
the receiver compares labels of L with those of the posi-
tioning code S, trying to find S’s leftmost or rightmost
subsequence that equals to L. For example, if L ¼ 17 and
S ¼ 1;177, the S’s leftmost and rightmost subsequence
that equals to L is underlined in 1;177 and 1;177, respec-
tively. The positions of the leftmost/rightmost subse-
quence is 13/24, and thus the corresponding decision is
that the first and the third bits of the message are received
(or the second and the last bits are received).

Alignment errors. For basic alignment, the probability
that alignment errors happen is 0. For fast alignment,
alignment errors may happen if the positions of the left-
most/rightmost subsequence are not formed by the
correct positions of the received bits. We derive the
upper bound of the probability of alignment errors in
Theorem 4.

Theorem 4 (Probability of alignment errors). The probability
pe that the receiver fails to generate correct alignments is

1�
Pn

k¼q

k
qð ÞPn

w¼q
w
qð Þ ð1�

prd�prðn�qþ1Þ
R�d Þk�q, where n is the length

of a positioning code, R is the number of possible values for
each label, r is the number of retransmissions for each bit in the
message, d is the diversity degree of the positioning code, and p
is the probability that a bit is lost.

Proof. Let S ¼ s1jj:::jjsn denote the sequence formed by the
positioning code and peq be the probability that the ith ele-
ment si equals to the jth element sj, where 1 � i; j � n

and i 6¼ j. According to Lemma 1, peq � 1
R� d, whereR and

d are the number of labels and the diversity degree of the
positioning code, respectively. Let F ¼ f1jj:::jjfq denote
the sequence formed by the actual positions of received
bits (i.e., the receiver receives the f1th; . . . ; fqth bits), and
L denote the sequence formed by merged labels. F is the
positions of S’s leftmost subsequence that equals L if two
conditions are satisfied: (1) For 1 � i < f1, si 6¼ sf1 . (2) For

1 � j � q � 1 and fj < i < fjþ1, si 6¼ sfjþ1
. tu

Therefore, the probability pmin that F is the positions of

S’s leftmost subsequence is
Qf1�1

i¼1 ð1� Pðsi ¼ sf1ÞÞ
Qq�1

j¼1
Qfjþ1�1

i¼fjþ1ð1� Pðsi ¼ sfjþ1
ÞÞ. Assume that fj < i < fjþ1. Thus,

Pðsi ¼ sfjþ1
Þ ¼ peqPðfjþ1 � i > dÞ. According to Lemma 1,

peq � 1
ðR�dÞ. Thus, Pðsi ¼ sfjþ1

Þ � Pðfjþ1�fj>dÞ
R�d . Note that

fjþ1 � fj > d indicates that at least d labels between sfj

and sfjþ1
are lost. Therefore, Pðsi ¼ sfjþ1

Þ � prd�prðn�qþ1Þ
R�d Simi-

larly, for 1 � i � f1, Pðsi ¼ sf1Þ �
prd�prðn�qþ1Þ

R�d Thus, pmin �
ð1� prd�prðn�qþ1Þ

R�d Þfq�q, where fq is a random variable ranging

from q to n. According to total probability formula,

pmin �
Pn

k¼q

k
qð ÞPn

w¼q
w
qð Þ ð1�

prd�prðn�qþ1Þ
R�d Þk�q. The probability pe

that the alignment is incorrect equals to the probability that
F is not the positions of S’s leftmost subsequence. Hence,

pe ¼ ð1� pminÞ � 1�
Pn

k¼q

k
qð ÞPn

w¼q
w
qð Þ ð1�

prd�prðn�qþ1Þ
R�d Þk�q.

We also use simulation to validate the analytical upper
bound of alignment errors. The parameters are the same
as those used in the simulation for merging errors (i.e.,
R ¼ 32, p ¼ 0:95, and 10,000 trials). In each trial, we ran-
domly generate a positioning code of length 155, retrans-
mit each label for r times (10 � r � 30), and delete each
retransmitted label with probability p. The remaining
labels are merged together. Then we find the positions of
received bits (labels) using the fast alignment alignment
approach, and compare the result with the true positions.
If they are not equal, an alignment error happens and we
mark this trial as failed. We compute the simulated

Fig. 11. Merging errors.

FANG ETAL.: WIRELESS COMMUNICATIONS UNDER BROADBAND REACTIVE JAMMING ATTACKS 401

probability of alignment error and its analytical upper

bound using ð#failed trials
#total trialsÞ and Theorem 4.

Fig. 12 shows that the error probability decreases as
diversity degree d and the number of retransmissions
increase. From Fig. 12, we can observe that Theorem 4 gives
a tight upper bound of the error probability. In particular,
when d ¼ 8 and r ¼ 20, both the simulated probability and
the upper bound are about 0.0006.

5 DEALING WITH POLLUTION ATTACKS

At first glance, the receiver can use the physical layer finger-
prints (e.g., [5], [22]) to distinguish between the sender’s and
the jammer’s bits. However, as discussed earlier, an attacker
may forge these fingerprints to impersonate a target wire-
less device. The root reason for such forging attacks is that
physical layer fingerprints are exposed to the public, and
anyone who receives the sender’s signals can obtain these
fingerprints. The easy access of physical layer fingerprints
provides opportunities for attackers to perform reverse
engineering to crack these fingerprints. In this section,
instead of relying on the publicly-known fingerprints, we
aim to create techniques that enable the use of a shared
secret key between the sender and the receiver to combat
pollution attacks.

5.1 Overview of the Technique

As indicated in Section 2, the sender may take a random
backoff prior to each transmission to reduce chances of
being jammed. We explore such random backoffs to deal
with pollution attacks. Intuitively, assume the receiver
knows when the sender is in backoffs, we can create a
“dilemma” for the jammer: if the jammer sends fake bits
when the sender is in backoffs, these bits will be simply dis-
carded by the receiver because the receiver knows that the
sender is silent. On the other hand, if the jammer sends fake
bits when the sender is in non-backoffs, the jammer actually
jams the transmission and the receiver can remove jammed
bits by using a jamming detector. In this paper, we refer to a
non-backoff interval as a transmission interval.

Based on this intuition, we propose to establish common
transmission intervals between the sender and the receiver
to deal with pollution attacks. Note that the common trans-
mission intervals should be confidential to the jammer, such
that the jammer cannot follow them to jam the communica-
tion. In traditional FHSS and DSSS systems, a shared secret
key is used to generate common frequency hopping pat-
terns or spread spectrum sequences only known to the com-
municators for the anti-jamming purpose. Similarly, the

sender and the receiver can utilize such a shared secret key
to generate their transmission intervals.

Fig. 13 shows an example of the countermeasure
against pollution attacks. For the sake of the presentation,
we assume a time slotted system, where continuous time
is divided by multiple time slots. As shown in Fig. 13,
three transmission intervals are generated by the shared
secret, and they start at time slots 1, 6, and 14. Each trans-
mission interval lasts for three time slots. The sender
(receiver) only transmits (receives) on the transmission
intervals. As aforementioned, if the jammer transmits
fake bits during the transmission interval (e.g., slots 1, 2,
and 3), the jammer actually jams the transmission, and
the receiver will detect and remove jammed bits by using
a jamming detector; If the jammer transmits fake bits dur-
ing the backoffs (e.g., slots 10, 11, and 12), the receiver
will simply discard these fake bits.

One important difference between the physical layer
fingerprinting techniques and the proposed scheme is
that the former detects fake bits after fake bits have
already been received by the receiver, whereas the latter
prevents the receiver from receiving fake bits at the
beginning. Thus, compared to the physical layer finger-
printing techniques, the proposed scheme makes a dra-
matic shift from tolerating the disaster after it happens to
preventing the disaster from happening.

To make such a preventive defense scheme against pollu-
tion attacks feasible, two key technical questions need to be
addressed. First, how can the sender and the receiver gener-
ate the transmission pattern? Second, due to clock discrep-
ancy and transmission delay, the receiver’s generated
pattern may not exactly synchronize with the sender’s gen-
erated pattern. As shown in Fig. 14, the first transmission
interval of the sender starts at t0, but that of the receiver
starts at t1 in the sender’s clock. Thus, the second question
is how the sender and the receiver can achieve transmission
synchronization, such that the receiver captures the sender’s
transmission intervals. In what follows, we create techni-
ques that can solve both challenges.

5.2 Generation of Transmission Intervals

To prevent a jammer from predicting the transmission
schedule, a transmission interval should happen at a ran-
dom time. The sender and the receiver use the shared secret

Fig. 12. Alignment errors.

Fig. 13. An example of the defense against pollution attacks.

Fig. 14. Example of the transmission synchronization.

402 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 3, MAY/JUNE 2016

to generate random start times for transmission intervals.
Assume the communicators expect m transmission inter-
vals. Let ti denote the start time of the ith transmission inter-
val for 1 � i � m. Let hð�Þ denote utilizing a cryptographic
hash function. Let s and l denote the secret key and the
duration of a transmission interval, respectively. Further let
n denote the maximum interval between the end time of a
transmission interval and the start time of the next transmis-
sion interval. Both l and n are adjustable and can be selected
based on the system requirement. To generate ti, the sender
and the receiver use their current local times to initialize t0,
and then for 1 � i � m they compute ti as ti ¼ ti�1þ
lþ hm�iþ1ðsÞ mod n, where mod denotes the modular oper-
ation, ti�1 þ l denotes the finishing time of the i� 1th trans-

mission interval, and hm�iþ1ðsÞ denotes applying the hash
function hð�Þ on the secret key s for m� iþ 1 times.
For example, tm ¼ tm�1 þ lþ hðsÞ mod l, tm�1 ¼ tm�2 þ lþ
hðhðsÞÞ mod l, and t1 ¼ t0 þ lþ hmðsÞ mod l.

5.3 Transmission Synchronization

The receiver needs to identify the sender’s transmission
intervals, such that it can capture the full picture of the
transmitted content. In the ideal case, the receiver can sim-
ply use existing channel sensing techniques (e.g., [29], [30])
to detect the sender’s transmission intervals. For example, if
the received signal strength is larger than a threshold, then
a transmission activity is detected and the receiver can
know the corresponding start time. However, in practice,
the jammer can inject fake transmission intervals to the
channel, but the channel sensing techniques may not distin-
guish between fake transmission intervals and the true
ones. As an example shown in Fig. 15, received transmission
intervals consist of the sender’s transmission intervals Is1,
Is2, I

s
3, and Is4, and the jammer’s fake transmission inter-

vals Ia1, I
a
2, I

a
3, and Ia4. Note that Ia3 jams Is3 and they

overlap each other. The receiver needs to identify the send-
er’s transmission intervals from the received jammed
intervals.

We propose to use two steps to identify the sender’s
transmission intervals. First, the receiver coarsely finds
all possible start times of the sender’s transmission inter-
vals. Then, the receiver uses its local generated start times
of transmission intervals to refine the coarse result and
determine the correct start times of the sender’s transmis-
sion intervals. Note that the duration of each transmission
intervals can be either fixed or generated using the shared
key. With the start time ti and the transmission duration
li, the receiver identifies the corresponding transmission
interval Ii.

Coarse transmission synchronization. Intuitively, the event
that jamming occurs indicates that a second party (i.e., a
jammer or the sender) begins to transmit. Thus, a jamming
detector can be utilized to identify the sender’s start times.
A receiver identifies a possible start time of the sender if it
detects a new transmission activity or jamming. Fig. 16

shows a synchronization example. At time t1, the receiver
detects that a new transmission starts and it records t1 as an
identified start time. At time t2, the receiver detects that a
new jamming starts, and thus it knows that either the
sender or the jammer begins to transmit at t2. So the receiver
also records t2 as an identified start time. Similarly, the
receiver records t4, t6, and t10 because new jamming starts
at these time points, and records t9 because a new transmis-
sion is detected. Note that the time points t3, t5, t7, t8, and
t11 are not recorded as start times because the receiver nei-
ther detects new transmissions nor new jamming.

Fine-grained transmission synchronization. After the
receiver finds out the coarse set of the start times of the
sender’s transmission intervals, the receiver will refine this
coarse set to precisely determine the sender’s start times.
Assume the coarse set includes all the start times of the
sender. We compare identified start times in the set to the
receiver’s local generated start times to find the sender’s
start times. Specifically, let tsi and tri denote the ith
(1 � i � m) start time generated by the sender and the
receiver, respectively. Because the sender and the receiver
use a shared secret key to generate tsi and tri, we have
Ds

i ¼ Dr
i, where Ds

i ¼ tsi � tsi�1 and Dr
i ¼ tri � tri�1 for

1 � i � m.
Assume that the receiver identifies k (k >¼ m) start times

during a certain time window. Let T denote the set formed
by the k start times and T ¼ fto1; to2; :::; tokg. If to1 is the start
time of the first transmission interval of the sender (i.e.,
to1 ¼ ts1), then the start times of the second, third; . . . ; and
the ith transmission intervals of the sender should be

to1 þ Dr
2, to1 þ Dr

2 þ Dr
3; . . . ; and to1 þ

Pj¼i
j¼2 D

r
j, respec-

tively. Let ti ¼ to1 þ
Pj¼i

j¼2 D
r
j. Thus, the receiver can check

if t2, t3; . . . ; tm are elements in the set T . If all of them are ele-
ments in T , then to1 is the start time of the first transmission
interval of the sender, and ti for 2 � i � m is the start time
of the ith transmission interval. If any of the tis are not in T ,
then to1 is not the start time of the first transmission interval
of the sender, and the receiver uses the same method to
check if to2 is the start time of the first transmission interval,

i.e., verifying whether or not to2 þ
Pj¼i

j¼2 D
r
j are elements of

T for 2 � i � m. Once the receiver finds the start time
t (t 2 T) of the first transmission interval, the receiver can
find the start times of all the other transmission intervals
(e.g., the start time of the ith (2 � i � m) transmission inter-

val is tþ
Pj¼i

j¼2 D
r
j.).

5.4 Synchronization Errors

When false negatives of the jamming detector occur, the
coarse set may not include all the sender’s start times. For
example, if the false negative happens at time t4, the corre-
sponding jamming event will not be detected and thus the

Fig. 15. Observed transmission intervals.

Fig. 16. Start times of the sender’s and the jammer’s transmission
intervals.

FANG ETAL.: WIRELESS COMMUNICATIONS UNDER BROADBAND REACTIVE JAMMING ATTACKS 403

start time of the second transmission interval is missing in
the coarse set. However, the sender and the receiver can
always use retransmissions to eventually establish the trans-
mission synchronization. We perform the following simula-
tion to examine the number of retransmissions required for
synchronization under different probabilities of false
negative.

We perform 1,000 trails in the simulation. In each trail,
we randomly generate transmission intervals and the jam-
ming events, and then perform coarse synchronization to
form the coarse set. Let FN denote the probability of false
negative of the jamming detector, where FN ranges
between 0 and 0.2 in the simulation. For each of the sender’s
start times in the coarse set, we delete it at the probability of
FN . Afterwards, we input the coarse set into the fine-
grained synchronization algorithm. If the fine-grained syn-
chronization fails, we let the sender retransmit (i.e., we
repeat the same procedure) until the synchronization is suc-
cessful. We record the average of the number of retransmis-
sions of the 1,000 trails.

As shown in Fig. 17, the average ranges between 3 and 9
for different lengths of the transmission duration l when
FN reaches a high value of 0.2. We can observe that a
smaller l leads to reduced number of retransmissions, and
thus lessens the communication overhead. In particular,
when l ¼ 5, the average number of retransmissions can be
as low as 3.

Fig. 18 shows the relationship between the retransmis-
sion number and the successful synchronization rate when
the length l of the transmission duration is set to 5. We can
see that the rate increases as the number of retransmissions
increases. Specifically, when the jamming detection false
negative rate is as high as 0.2, we can still achieve a success-
ful synchronization rate that is above 0.85 after using five
retransmissions.

False alarms can be caused by the jamming detector and
the transmission detection algorithms. Fig. 19 shows the
relationship between the successful synchronization rate
and the false alarm rate, when the retransmission number
and the length l of the transmission are 3 and 5, respectively.
We can see that the false alarm rate has no effect on the suc-
cessful synchronization rate for different false negatives.
When we increase the false alarm rate (i.e., more false start-
ing times are inserted into the coarse set), the fine-grained
transmission synchronization will encounter increased run-
ning time, but the synchronization accuracy remains the
same as there are no false alarms.

Furthermore, we explore the relationship between the reac-
tion time of the jammer and the number of retransmissions
for different bit rates. We plot the results in Fig. 20. The mes-
sage size M is set to 1,024 bytes. We can observe that the
retransmission number always decreases as the reaction
time increases. This observation implies that the sender
must utilize more retransmissions to defend against the
jamming attacks when the jammer has a reduced action
time. Specifically, when the reaction time ra is 0.6 ms and
the bit rate R is 1 Mbps, the sender can only transmit a very
small portion (ra �R=M ¼ 0:007%) of the total message
within the reaction time. For such a powerful jammer, as
shown in Fig. 20a, the receiver can still successfully achieve
synchronization with the sender after using two retransmis-
sions when the false negative rate is 0.05. Figs. 20b and 20c
show the number of retransmission for different bit rates
when the false negative rates are 0.1 and 0.15, respectively.

6 IMPLEMENTATION AND EVALUATION

We develop a prototype anti-jamming communication sys-
tem, which we name as BitTrickle, to facilitate the experi-
mental evaluation of the proposed techniques under
reactive jamming. The prototype system consists of a sender
and a receiver, both implemented as a USRP connected to a
commodity PC that runs the sender (receiver) program. The
USRPs uses XCVR2450 daughter boards operating in the
2.4 GHZ range as RF front ends. The software toolkit is
based on GNURadio [1].

Reactive jammer: We setup a high power and sensitive
reactive jammer to test the performance. The jammer is
implemented on USRPs using GNURadio [1]. We employ
energy detection to achieve a lower channel sensing time

Fig. 17. Retransmission number versus false negative rate. Fig. 18. Successful synchronization rate versus retransmission number.

Fig. 19. Successful synchronization rate versus false alarm rate.

404 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 3, MAY/JUNE 2016

(i.e., a signal is detected if received signal strength exceeds a
configurable threshold). In our design of the jammer, we
equip the jammer with two RFX2400 daughter boards that
are used as a transmitter and a receiver, respectively. For
both the transmitter and receiver component, we set the
parameter “samples per symbol” the minimum value sup-
ported by GNURadio to reduce the processing delay (i.e.,
2 and 4 for transmitter and receiver, respectively). Also, to
maximize the impact of the jammer on the BitTrickle
receiver, we let the jammer transmits with maximum gain
and place the jammer very close to the receiver (i.e., within
0.1 meter range of the receiver). Parameters of the jammer is
shown in Table 1. Fig. 21 shows the topology of the experi-
ment system.

Compared schemes. We compare the following schemes:

� BitTrickle. The prototype anti-jamming implementa-
tion. This approach uses Reed-Solomon error correc-
tion codes, and differential 8PSK modulator/
demodulater. The prototype system supports two RS
coding rates, which are RS(155, 55) and RS(60, 36).

� GNURadio benchmark. The communication tool pro-
vided by GNURadio for data transmission and file
transfer between two USRPs. The source codes are
located at gnuradio/gnuradio-examples/python/
digital.

� 802.11 DSSS. IEEE 802.11 protocol running at direct-
sequence spread spectrum mode on 802.11 wireless
cards. This approach uses a 11-bits barker code for
spreading, carrier sense multiple access with colli-
sion avoidance mechanism (CSMA/CA) to resolve
collisions on shared channels, and forward error cor-
rection (FEC) to enable the reconstruction of the orig-
inal data.

Evaluation metrics. A jammer aims to prevent the commu-
nication between legitimate users. Therefore, how well the
sender and the receiver can communicate under jamming

attacks is a primary concern to assess anti-jamming systems.
We use the following metrics to evaluate the performance:
(1) Packet delivery ratio. The ratio of the number of correctly
received packets to the total number of packets transmitted
by the sender. We consider a packet to be received correctly
if the packet passes CRC check. (2) Throughput. This is the
number of successfully delivered bits normalized by time
unit. We use bits per second to measure the throughput.

6.1 Jamming Detector Parameters Selection

The function of jamming detector is to remove jammed
symbols. We implement the temporal based detection
method discussed in Section 3.3 to detect jammed sym-
bols. This method involves two key parameters: temporal
sequence length and jamming detector threshold. Thus, we
use a training phase to learn appropriate values of both
parameters in order to guarantee a good performance of
the jamming detector. The training phase collects jammed
and unjammed symbols and adjusts both parameters to
find a plausible pair. For example, Fig. 22 shows the
result for a temporal sequence length of 5. We can see
that a threshold of 0.3 balances the probabilities of false
negative and false positive and both probabilities are
about 0.1. By “probing” possible values, the communica-
tion system can decide temporal sequence length and
jamming detector threshold to achieve the expected false
error probabilities.

6.2 Performance of BitTrickle

We set the bit rate of the sender, the jammer, and the
receiver to be 1 Mbps. The sender transmits 100 data pack-
ets, each with 1,500 bytes. Positioning codes are randomly
generated, and the diversity degree is set to 2 throughout
the evaluation. Since the size of a data packet (1,500 bytes)
is too long to be directly used with the positioning code and
ECC, we divide it into multiple blocks and append a CRC
checksum to each block. We use block size 36 or 55 bits,
then RS (60,36) or RS (155,55) for ECC, and finally a posi-
tioning code of 60 or 155 bits.

Fig. 20. Retransmission number versus the reaction time of the jammer.

TABLE 1
Technical Details of the Reactive Jammer

Parameter Value

Frequency range 2.3-2.9 GHz
Channel sensing time 0.6 ms
Transmit power 50 mW
Interpolation/Decimation rate 64/32
Maximum receiving RF bandwidth 16 MHz

Fig. 21. Topology of the experiment system.

FANG ETAL.: WIRELESS COMMUNICATIONS UNDER BROADBAND REACTIVE JAMMING ATTACKS 405

Packet delivery ratio. We consider different jamming intensi-
ties. We use a probabilistic reactive jammer that jams at
probability p for 0 � p � 1 once detects a sender’s signal.
The jamming duration is set to be 10 times of the transmis-
sion time of a single packet. We compute packet delivery

ratio as #correct packets ðblocksÞ
#total transmitted packets ðblocksÞ. Fig. 23 shows the result.

(1) 802.11 DSSS and GNURadio benchmark. Packet deliv-
ery ratio decreases as jamming probability increases. Due
to the lack of ECC and retransmission mechanism, the
packet delivery ratio of GNURadio benchmark decreases
at a rate linearly proportional to the jamming probability.
Although 802.11 DSSS achieves a higher packet delivery
ratio than GNURadio benchmark, when jamming proba-
bility exceeds 0.7, the performance of 802.11 DSSS
degrades dramatically. For both 802.11 and benchmark,
when the jamming probability equal to 1, the packet deliv-
ery ratio drops to 0.

(2) BitTrickle. We use a random backoff ranging between
150-200 ms and set the number of bit retransmissions to be
15. Fig. 23 shows that BitTrickle achieves a stable packet
delivery ratio that is around 1 no matter how the jamming
probability varies. We then reduce the backoff time to 0 ms
and increase the bit retransmissions to 60. Fig. 23 shows that
the packet delivery ratio of BitTrickle decreases as jamming
probability increases. This is because the reduced backoff
time increases the chance that the sender’s signal collides
with the jammer’s signal. The modulator used by the
BitTrickle prototype has a higher bit error rate (i.e., BER)
than that used by GNURadio benchmark (i.e., GFSK).
Therefore, the packet delivery ratio of BitTrickle is less than
that of benchmark when jamming probability is small (e.g.,
� 0:7). However, when the probability is 1, unlike bench-
mark and 802.11, BitTrickle with zero backoff still achieves
a non-zero delivery ratio.

Throughput. We consider a common jamming scenario,
where the reactive jammer jams the channel as long as it
hears the target signal (i.e., p ¼ 1). To be conservative,
we set the backoff time of BitTrickle to be 0 ms. We per-
forms 40 trials. In each trial, the number of bit

retransmissions is set to 60 and the sender transmits
100 data packets to the receiver. We compute throughput

as #correct packets ðblocksÞ�packet ðblockÞ length
transmission time .

Fig. 24 plots the computed throughput for each trial. The
GNURadio benchmark and 802.11 DSSS fail to send any
packet, whereas BitTrickle still achieves a throughput that
ranges between 200-900 bits/s, allowing communication to
continue.

We also test the BitTrickle throughput under different
ECC coding rate (i.e., RS (155,55) and RS (60,36)). Fig. 25
plots the throughput as a function of signal-to-jamming
ratio (SJR) (i.e., the ratio of the reaction time to jamming
duration). As shown in Fig. 25, RS (60,36) leads to a
higher throughput than RS (155,55) when SJR is less
than 0.25. That’s because RS (60,36) requires a shorter
positioning code than RS(155,55), which reduces the
chance of synchronization errors. As SJR increases, the
receiver gets more information from the sender, and
thus the probability of synchronization errors decreases.
The error correction capability of RS (155,55) is stronger
than that of RS (60,36). For small SJRs, RS (155,55) does
not suffer from severe synchronization errors, and thus
it can correct more substitution errors and achieve a bet-
ter throughput.

7 RELATED WORK

The jamming problem in wireless communication has been
widely studied during the past few decades (e.g., [4], [11],
[12], [19], [25], [26], [27], [28], [31], [32], [33], [34], [35], [36]),
and FHSS and DSSS (e.g., [19], [25], [28], [33], [34], [35])
have been widely used for defending against jamming
attacks. However, as discussed earlier, FHSS, DSSS, and
their variations fail to maintain the wireless communication
if the jammer is broadband and has a high transmit power.
The proposed research targets at broadband and high-
power reactive jammers, and will create anti-jamming tech-
niques that allow wireless devices to exchange information
when attacked by such jammers.

Fig. 22. False negative or positive of jamming detector.

Fig. 23. Packet delivery ratio.

Fig. 24. Throughput.

Fig. 25. Throughput for different coding rate.

406 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 3, MAY/JUNE 2016

A recent work considers threats from broadband jammers,
and proposes to use timing-based covert channels to
address broadband jammers [40]. The idea is to map the
inter-arrival times of a sender’s corrupted packets into
information bits [14]. However, this method fails if the jam-
mer launches pollution attacks or transmits with high
power to overwhelm transmitted packets. The proposed
research considers both broadband and high power jam-
mers, as well as pollution attacks. There exist other related
work, including methods for identifying insider jammers
[7], [8], mitigating jamming of control channels [14], [37],
jamming avoidance and evasion [3], [39], [42], and mitigat-
ing jamming in sensor networks [15], [39]. These work are
complementary to the proposed research.

8 CONCLUSION

We developed an anti-jamming system that can enable
wireless communication when a broadband and high power
reactive jammer is present. The designed system delivers
information by harnessing the reaction time of a reactive
jammer. It does not assume a reactive jammer with limited
spectrum coverage and transmit power, and thus can be
used in scenarios where traditional approaches fail. We
implemented a prototype of such system based on GNU
Radio. Our results showed that the prototype achieved a
reasonable throughput when 802.11 DSSS and GNURadio
benchmark were completely disabled by the jammer.

ACKNOWLEDGMENTS

This work is supported by the Army Research Office under
grant W911NF-14-1-0324. Yao Liu is the corresponding
author. An earlier version of the work was published in the
31st IEEE Conference on Computer Communications
(INFOCOM’12).

REFERENCES

[1] GNU Radio-The GNU Software Radio. (2014). [Online]. Available:
http://www.gnu.org/software/gnuradio/

[2] Reactive jamming technologies. (2012). [Online]. Available:
http://www.ece.gatech.edu/academic/courses/ece4007/
08fall/ece4007l02/lm5/jammer.doc

[3] L. Baird, W. Bahn, and M. Collins, “Jam-resistant communication
without shared secrets through the use of concurrent codes,” US
Air Force Academy, Colorado Springs, CO, USA, Tech. Rep.
USAFA-TR-2007-01, U.S. Air Force Academy, 2007.

[4] A. J. Berni and W. D. Greeg, “On the utility of chirp modulation
for digital signaling,” IEEE Trans. Commun., vol. C-21, no. 6,
pp. 748–751, Jun. 1973.

[5] V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless device
identification with radiometric signatures,” in Proc. 14th ACM Int.
Conf. Mobile Comput. Netw., 2008, pp. 116–127.

[6] D. Cabric, A. Tkachenko, and R. W. Brodersen, “Experimental
study of spectrum sensing based on energy detection and network
cooperation,” in Proc. 1st Int. Workshop Technol. Policy Accessing
Spectrum, 2006, p. 12.

[7] J. Chiang and Y. Hu, “Extended abstract: Cross-layer jamming
detection and mitigation in wireless broadcast networks,” in Proc.
ACM Int. Symp. Mobile Ad Hoc Netw. Comput., 2007, pp. 346–349.

[8] J. Chiang and Y. Hu, “Dynamic jamming mitigation for wireless
boradcast networks,” in Proc. IEEE Int. Conf. Comput. Commun.,
2008, pp. 1211–1219.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-
tion to Algorithms, 2nd ed. Cambridge, MA, USA: MIT Press, 2001.

[10] B. Danev, H. Luecken, S. Capkun, and K. E. Defrawy, “Attacks on
physical-layer identification,” in Proc. 3nd ACM Conf. Wireless
Netw. Secur., Mar. 2010, pp. 89–98.

[11] A. Goldsmith, Wireless Communications. Cambridge, U.K.:
Cambridge Univ. Press, Aug. 2005.

[12] S. Hengstler, D. P. Kasilingam, and A. H. Costa, “A novel chirp
modulation spread spectrum technique for multiple access,” in
Proc. IEEE Int. Symp. Spread Spectrum Techn. Appl., Sep. 2002,
pp. 73–77.

[13] H. Kim and K. G. Shin, “In-band spectrum sensing in cognitive
radio networks: Energy detection or feature detection?” in Proc.
14th ACM Int. Conf. Mobile Comput. Netw., 2008, pp. 14–25.

[14] L. Lazos, S. Liu, and M. Krunz, “Mitigating control-channel jam-
ming attacks in multi-channel ad hoc networks,” in Proc. 2nd
ACM Conf. Wireless Netw. Secur., Mar. 2009, pp. 169–180.

[15] M. Li, I. Koutsopoulos, and R. Poovendran, “Optimal jamming
attacks and network defense policies in wireless sensor
networks,” in Proc. IEEE Int. Conf. Comput. Commun., 2007,
pp. 1307–1305.

[16] A. Liu, P. Ning, H. Dai, Y. Liu, and C. Wang, “Defending DSSS-
based broadcast communication against insider jammers via
delayed seed-disclosure,” in Proc. 26th Annu. Comput. Secur. Appl.
Conf., Dec. 2010, pp. 367–376.

[17] Y. Liu and P. Ning, “BitTrickle: Defending against broadband
and high-power reactive jamming attacks,” Comput. Sci.
Dept., NC State University, Raleigh, NC, USA, Tech. Rep. TR-
2011-17, Jul. 2011.

[18] Y. Liu and P. Ning, “Enhanced wireless channel authentication
using time-synched link signature,” in Proc., Mini-Conf., 2012,
pp. 2636–2640.

[19] Y. Liu, P. Ning, H. Dai, and A. Liu, “Randomized differential
DSSS: Jamming-resistant wireless broadcast communication,” in
Proc. IEEE INFOCOM, 2010, pp. 1–9.

[20] Ettus Research LLC, The USRP product family products and
daughter boards. (2011). [Online]. Available: http://www.ettus.
com/products

[21] A. Papoulis, Probability, Random Variables, and Stochastic Processes.
New York, NY, USA: Mc-Graw Hill, 1984.

[22] N. Patwari and S. K. Kasera, “Robust location distinction using
temporal link signatures,” in Proc. 13th Annu. ACM Int. Conf.
Mobile Comput. Netw., New York, NY, USA, 2007, pp. 111–122.

[23] R. Poisel, Modern Communications Jamming Principles Techniques.
Norwood, MA, USA: Artech House Publishers, 2006.

[24] S. O. Rice, “Mathematical analysis of random noise,” Bell Syst.
Tech. J., vol. 24, pp. 46–156, 1945.

[25] C. P€opper, M. Strasser, and S. �Capkun, “Jamming-resistant broad-
cast communication without shared keys,” in Proc. USENIX Secu-
rity Symp., 2009, pp. 231–248.

[26] C. P€opper, M. Strasser, and S. �Capkun, “Anti-jamming broadcast
communication using uncoordinated spread spectrum techniques,”
IEEE J. Sel. Areas Commun., vol. 28, vol. 5, pp. 703–715, Jun. 2010.

[27] R. A. Scholtz, “Multiple access with time hopping impulse modu-
lation,” in Proc. IEEE MILCOM Conf., 1993, pp. 447–450.

[28] R. A. Scholtz, Spread Spectrum Communications Handbook. New
York, NY, USA: McGraw-Hill, 2001.

[29] S. Shellhammer, An ATSC Detector Using Peak Combining, IEEE
802.22-06/0243r0, Nov. 2006.

[30] S. Shellhammer, S. Shankar, N. R. Tandra, and J. Tomcik,
“Performance of power detector sensors of DTV signals in
IEEE 802.22 WRANs,” presented at the 1st Int. Workshop
Technology and Policy Accessing Spectrum, New York, NY,
USA, 2006.

[31] A. Springer, W. Gugler, M. Huemer, L. Reindl, C. C. W. Ruppel,
and R. Weigel, “Spread spectrum communication using chirp sig-
nals,” in Proc. IEEE/AFCEA EUROCOMM Conf., May 2000,
pp. 166–170.

[32] M. Strasser, B. Danve, and S. Capkun, “Detection of reactive
jamming in sensor networks,” ACM Trans. Sensor Netw., vol. 7,
pp. 1–29, Aug. 2010.

[33] M. Strasser, C. P€oper, S. �Capkun, and M. �Cagalj, “Jamming-
resistant key establishment using uncoordinated frequency
hopping,” in Proc. IEEE Symp. Secur. Privacy, 2008, pp. 64–78.

[34] M. Strasser, C. P€opper, and S. �Capkun, “Efficient uncoordinated
FHSS anti-jamming communication,” in Proc. 10th ACM Int. Symp.
Mobile Ad Hoc Netw. Comput., 2009, pp. 207–218.

[35] D. Torrieri, Principles of Spread-Spectrum Communication Systems.
New York, NY, USA: Springer, 2004.

[36] M. Win and R. Scholtz, “Impulse radio: How it works,” IEEE
Commun. Lett., vol. 2, no. 2, pp. 36–38, Feb. 1998.

FANG ETAL.: WIRELESS COMMUNICATIONS UNDER BROADBAND REACTIVE JAMMING ATTACKS 407

[37] P. Tague, M. Li, and R. Poovendran, “Probabilistic mitigation of
control channel jamming via random key distribution,” in Proc.
IEEE 18th Int. Symp. Personal, Indoor Mobile Radio Commun., 2007,
pp. 1–5.

[38] W. Xu, K. Ma, W. Trappe, and Y. Zhang, “Jamming sensor net-
works: Attack and defense strategies,” IEEE Netw., vol. 20, no. 3,
pp. 41–47, May/Jun. 2006.

[39] W. Xu, W. Trappe, and Y. Zhang, “Channel surfing: Defending
wireless sensor networks from jamming and interference,” in
Proc. 6th Int. Conf. Inf. Process. Sen. Netw., 2007, pp. 499–508.

[40] W. Xu, W. Trappe, and Y. Zhang, “Anti-jamming timing channels
for wireless networks,” in Proc. 1st ACM Conf. Wireless Netw.
Secur., 2008, pp. 203–213.

[41] W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of
launching and detecting jamming attacks in wireless networks,”
in Proc. ACM Int. Symp. Mobile Ad Hoc Netw. Comput., 2005,
pp. 46–57.

[42] W. Xu, T. Wood, W. Trappe, and Y. Zhang, “Channel surfing and
spatial retreats: Defenses against wireless denial of service,” in
Proc. 3rd ACMWorkshop Wireless Secur., 2004, pp. 80–89.

[43] J. Zhang, M. H. Firooz, N. Patwari, and S. K. Kasera, “Advancing
wireless link signatures for location distinction,” in Proc. 14th
ACM Int. Conf. Mobile Comput. Netw., New York, NY, USA, 2008,
pp. 26–37.

Song Fang received the BS degree in informa-
tion engineering from the South China University
of Technology, Guangzhou, China, in July 2011,
and the MS degree in communication and infor-
mation engineering from the Beijing University of
Posts and Telecommunications, Beijing, China, in
March 2014. From August 2013, he is working
toward the PhD degree in computer science at
the University of South Florida, Tampa, FL. His
research interests are in the area of network and
system security. His current research mainly

focuses on utilizing novel physical layer techniques to improve the
security in wireless networks.

Yao Liu received the PhD degree in computer
science from North Carolina State University in
2012. She is currently an assistant professor in
the Department of Computer Science and Engi-
neering, University of South Florida, Tampa, FL.
Her research is related to computer and network
security, with an emphasis on designing and
implementing defense approaches that protect
emerging wireless technologies from being
undermined by adversaries. Her research interest
also lies in the security of cyber-physical sys-

tems, especially in smart grid security. Her research work has appeared
in premier journals and conferences including the ACM Transactions on
Information and Systems Security, IEEE Symposium on Security and
Privacy (IEEE S&P), ACM Conference on Computer and Communica-
tions Security (CCS), and IEEE International Conference on Computer
Communications (INFOCOM). She received the Best Paper Award for
the Seventh IEEE International Conference on Mobile Ad-Hoc and Sen-
sor Systems.

Peng Ning (M’01-SM’12) received the BS degree
in information sciences from the University of Sci-
ence and Technology of China (USTC), Hefei,
China, in 1994, the ME degree in communica-
tions and electronics systems from USTC, Grad-
uate School in Beijing, Beijing, China, in 1997,
and the PhD degree in information technology
from George Mason University, Fairfax, VA, in
2001. He is a professor of computer science in
NC State University, where he also serves as the
technical director for Secure Open Systems, a

recipient of the US National Science Foundation (NSF) Initiative (SOSI).
He received the US NSF CAREER Award in 2005. He is currently the
secretary/treasurer of the ACM Special Interest Group on Security,
Auditing, and Control (SIGSAC), and is on the executive committee of
ACM SIGSAC. He is an editor for Springer Briefs in Computer Science,
responsible for Briefs on information security. He has served or is serv-
ing on the editorial boards of several international journals, including the
ACM Transactions on Sensor Networks, Journal of Computer Security,
Ad-Hoc Networks, Ad-Hoc & Sensor Networks: An International Journal,
International Journal of Security and Networks, and IET Proceedings
Information Security. He also served as the program chair or co-chair for
ACM SASN ’05, ICICS ’06 and ESORICS ’09, ICDCS-SPCC ’10, and
NDSS ’13, the general chair of ACM CCS ’07 & ’08, and the program
vice chair for ICDCS ’09 & ’10-Security and Privacy Track. He served on
the Steering Committee of ACM CCS from 2007 to 2011, and is a found-
ing Steering Committee member of ACM WiSec and ICDCS SPCC. His
research has been supported by the US NSF, Army Research Office
(ARO), the Advanced Research and Development Activity (ARDA), IBM
Research, SRI International, and the NCSU/Duke Center for Advanced
Computing and Communication (CACC). He is a senior member of the
ACM, ACM SIGSAC, and the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

408 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 3, MAY/JUNE 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

