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Abstract—The prevalence and monetary value of mobile de-
vices, coupled with their compact and, indeed, mobile nature, lead
to frequent theft due to a lack of proper anti-theft mechanisms.
Currently there only exist damage control efforts such as remote
wiping the device’s memory or GPS tracking, but nothing to
notify users of theft while it takes place. We propose such a
mechanism which utilizes the unique motion patterns inherent to
humans and differentiate our work from other motion behavior
studies by using it as first-order authentication and developing
matching methods fast enough to act as an actual anti-theft
system. We test our system with the aid of 45 volunteers and
demonstrate detection of unauthorized movement within 10 to 20
steps with an accuracy of 96.4% to 97.5%, while simultaneously
distinguishing owners as themselves with 97.8% accuracy.

I. INTRODUCTION

Evolutions in mobile technology have enabled mobile de-
vices to become extensively personal and valuable items, their
loss or theft furthermore compromising important sensitive
information. Advocacy group Consumer Reports writes that
2014 sustained more than 3.1 million instances of mobile
device theft, despite myriad anti-theft measures available for
users [15]. These measures all focus on devices’ retrieval or
prevention of information leakage, instead of attempting to
make a timely alert of the actual theft.

For example, included in Apple’s iOS 7 is a popular scheme
which allows users to remotely wipe and lock their devices,
once a theft is discovered. A thief is unable, then, to read any
of the deleted data. Apple also offers a free app called Find
My iPhone which enables users to collect GPS information
from their devices for the opportunity to find and recover
them. These examples illustrate the reactive nature of current
approaches and the void of proactive defenses. They require
discovery of the theft before any security actions can be made,
and therefore allow the thief full physical access of the device
for a potentially notable amount of time. Security researchers
understand this to be the most powerful type of adversary.

In this sense, there are no true anti-theft mechanisms for
mobile devices, just damage control schemes. Accordingly, in
this paper we develop a means to detect stealing behavior,
that is, ongoing unauthorized movement of a device. Entitled
Virtual Safe, we liken it to a physical safe for storing valuables,
as it enables the user to set down a device and restricts other
individuals from removing it without causing alarm. Because
a thief has to walk away with a stolen mobile device, we
employ motion pattern, or gait, authentication to verify the
identity of the person in possession of the device immediately

whenever it is moved. Human gait has been studied and used
in several previous behavioral biometric schemes using various
classification algorithms different from ours to authenticate
users (e.g., [2]–[4]). Notably, these approaches all focus on
empirically proving that human gait is an effective metric to
identify human beings while none to our knowledge handle
the time demand involved with our anti-theft application. Of
all the related papers we could find, only one comments on
the effect of the training time on system performance, and
none comment on the time required for testing. For anti-theft,
it is critical for the detection scheme to render a very timely
decision on the identity of the current device holder.

We thus offer a detection system for performing authenti-
cation whenever the mobile device is moved, able to notify
the owner before a thief escapes. Of the sensors offered in
modern devices, we use the accelerometer, which monitors the
device’s acceleration due to human movement. This provides
us occasion to begin authentication, as both a device owner and
any potential thieves necessarily cause a reading on this sensor
as soon as they interact with the device. Once this occurs, we
compare the current user’s acceleration data with that of the
owner to give a match score, which if smaller than a threshold
indicates unauthorized movement.

A naive strategy would be to directly apply existing clas-
sification tools such as the Kolmogorov-Smirnov (K-S) test
[12], Total Variation Distance [1], or Support Vector Machine
(SVM) [5] to the raw accelerometer data, but these tools
involve non-trivial operations like empirical probability fitting
and Quadratic Programming. Because a quick theft detection
scheme needs a minimized number of complex operations,
wherever possible we use less expensive calculations, like
arithmetic addition and multiplication, that can be easily
implemented and executed on a mobile device.

Additionally, a quick detection method should operate on a
limited set of data to reduce the total number of comparisons
necessary. For this reason we work to identify the most rep-
resentative walking patterns for a user, those that are strongly
correlated with the rest of the raw accelerometer data. Through
construction of an algorithm which compares only the most
representative walking patterns using elementary arithmetic, in
lieu of using sophisticated classification tools to classify the
whole raw data, we reduce the processing time to its minimum.

Specifically, we have created motion synchronization tech-
niques to extract step cycles from the raw acceleration data
for comparison between individuals. We have also created



a representative matching algorithm to find and compare
“signature” step cycles for a behavior for improved accuracy
and reduced processing time. Our case study shows that this
matching method is theoretically 300 times faster than the
traditional strategy of comparing all possible data. We find by
real world experiment that the proposed system distinguishes
between our 45 volunteers with 96.4% to 97.5% accuracy.
Additionally, each particular participant in our experiment was
static enough in walking habits to be identified as themselves
97.8% of the time. Unauthorized movement of mobile devices
is detected within 10 to 20 steps, and battery usage overhead
is around 4.7% for the typical user.

Fig. 1. System construction

II. RELATED WORK

Related work falls generally into solutions to be used once
theft is realized and solutions to strengthen the (un)locking
mechanism on devices. We have already differentiated our
work from these types, as a solution to detect ongoing theft
before any (un)locking takes place. The Introduction discusses
related work in walking gait authentication and the unique
challenges and goals of our system in comparison with these
efforts, so this section will focus on other theft-reactant and
authentication-strengthening work.

Most theft-reactant applications currently available are
based on a combination of GPS, Wi-Fi positioning and cell
tower triangulation to track location. GadgetTrack is one
popular anti-theft application implemented both on Android
and iOS systems [9]. Beside its tracking scheme, it can encrypt
photos and contacts on a stolen device and store them in a cer-
tified secure data center, wiping any local personal information
in the process. A more blunt measure is proposed by Gao et.al
which locks SIM cards to their respective mobile phones [7].
If the phone is stolen, the owner can call the service operators
to disable the lost SIM card, which disallows any usage of the
device with that SIM card or any replacements.

In the group of strengthening authentication mechanisms,
behavioral and physiological biometrics are increasing in
utilization. These attempt to protect sensitive information on
stolen devices from being compromised [11] [14]. Li et al.
implement re-authentication for mobile devices using users’
finger movement classified by support vector machines [11].
This system can continuously authenticate the owner during
normal phone usage. It monitors and learns the owner’s finger
movement patterns to compare with those of the current
user. Similarly, Shahzad et al. propose a gesture based user

authentication scheme applying human-distinguishing features
such as finger velocity, device acceleration, and stroke time
[14]. It is important to note that these methods only start
collecting data and doing re-authentication after the phone’s
password has been entered, while ours does authentication
when the thief walks away with it and presumably before
the thief gets to a safe location to begin cracking the phone.
Finally, Apple’s Touch ID represents a physiological biometric
unlocking system to authorize users and purchases. A User
needs only touch the device’s Home button, and the system
will authenticate the fingerprint.

III. SYSTEM OVERVIEW

Our system architecture was laid out in Figure 1. The Train-
ing module functions as a means to populate the Identification
Database with the device owner’s unique motion fingerprint.
There, the Motion Detection component is responsible for
discovering that the device is currently experiencing normal
motion behaviors. After the Data Collection component then
amasses raw accelerometer data representing the owner’s mo-
tion behavior, the Feature Extraction component deconstructs
this data into features and then assembles it into this fin-
gerprint. The Testing module performs analogous actions to
prepare a new fingerprint for the current user to be sent to the
Identification module. There, this test fingerprint is compared
in the Match component to the owner’s fingerprint as retrieved
from the Database component. Finally, the decision made by
the Match component is sent to the Action module as an
Unlock action or an Alert action.

As stated in the Introduction, our challenge is to accurately
identify a user within a short amount of time, which requires
both to use inexpensive calculations for low computational
complexity and to process only a small amount of data for
limited required comparisons. More complex tools demand
more than acceptable time for comparison between motion
patterns, and an unreasonably large number of motion pat-
terns to analyze exacerbates this. These efficiency issues are
targeted first in the Feature Extraction component, which
houses our pattern synchronization method for processing the
raw acceleration data into representative motion patterns. The
Match component further handles these considerations with a
collection of matching methods with differing strengths, which
optimize the comparison process by identifying and consider-
ing only the most representative motion patterns for a user.
In the subsections below, we further enumerate these integral
components conceptually to illustrate the functionality of our
system, followed after by technical details in corresponding
sections.

A. Pattern Synchronization Method

Existing tools like Dynamic Time Warping [10] and the K-
S Test are intuitive solutions to compare between two motion
patterns which may vary in time or speed, but first require ex-
traction of these patterns from measurements. This is the goal
of our pattern synchronization method, namely the automatic
parsing of individual steps from the raw accelerometer data.



Consider Figure 2, showing the results of our feature extraction
process. The two persons’ data are visibly different; in fact,
the step cycles (12 steps) extracted from person A are roughly
100 data points in length, where the step cycles from person
B are around 50 data points in length.
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Fig. 2. Examples of two walking patterns

Our step parsing technique addresses several issues. We first
define a step cycle as the data between two negative peaks in
the accelerometer data. This arises from our observation that as
a human lifts a leg, the body is overcoming gravity. The device
observes a large downward peak in acceleration, referred to in
set theory as a local minimum, in its highest position when
gravity is felt the least.

Next, we must select an appropriate representative step cycle
which we will use to divide the rest of the data into cycles.
We may not simply partition the data into cycles based on
the local minima only, because some minima are created by
accelerometer noise, and others are caused by irregular human
behavior. Consequently, instead of defining a cycle as whatever
data appears between two successive local minima, we start
with one minima and select from a set of nearby minima to
find which resultant cycle width best partitions the data. This
exact process is described in Section VI on Feature Extraction,
but conceptually involves testing different cycle widths for
cutting the data, and finding which width allows a sufficiently
high similarity between cycles.

B. Behavior Classification
In the event that a user alters motion behaviors (from

walking to running, for example) during a data collection
period, we must classify each motion cycle into its appropriate
behavior class. To handle this, we perform the pattern synchro-
nization as previously described, resulting in a representative
cycle, a set of cycles which correlate highly with it, and the
remainder of the data. On the testing side, we simply use the
representative and its similar cycles for matching, discarding
the rest. For training, however, all non-outlier data is useful,
so nothing is discarded. We place those similar cycles in the
database as a single behavior, appending them to an existing
set if there is also strong correlation between the two sets.
We then remove them from the collected data and repeat this
process amongst the remaining data until none remains and
the database has some number of new behaviors added. In
all, a user’s database will hold several behaviors, each with
correspondent cycles.

C. Matching Methods

After running pattern synchronization on test data and
collecting a set of cycles corresponding to one behavior, we
attempt to match it to some behavior in the database to verify
the user’s identity as device owner. Initially, we do this in a
conceptually simple traditional manner by comparing all test
cycles with every cycle in the database, and its broad data
coverage results in high accuracy. Nevertheless, this would be
impractical for our application, as the processing time would
be a function of the database size, and hence larger databases
would allow thieves more time to escape.

We develop a randomization method to choose for compar-
ison a selection of cycles, of static number, to reduce process-
ing cost significantly. Importantly, the decrease in accuracy
from using only a few sample cycles is not noticeable. We
furthermore design a third matching method which identifies
the most important step cycles for comparison. This method
retains roughly the same accuracy as the traditional method,
runs at least as quickly as the randomization method, and
stores a much smaller database than both other methods.
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Fig. 3. Device States

IV. MOTION DETECTION

When a device is sitting on a desk or being operated
by a stationary user, the data recorded by its accelerometer
contains no valuable information that can be used to identify
users. Hence we should ignore this data rather than attempting
process it into motion step cycles. However we do need to
detect the beginning of a motion pattern in a timely fashion.
This is important during training and testing to avoid wasting
any time in the user identification process. In order to do that,
our approach should distinguish between a state of rest or
operation and a state of actual motion.

Rest or Operation State: Figure 3 shows accelerometer
readings for a device sitting on a desk, being operated by
a non-walking user, and being carried by a walking user
respectively. The dash line represents the device is sitting on
a desk. There is no change of acceleration, which makes it
easy to identify. The solid line represents the device is being
operated. The subtle changes of accelerometer readings of this
case is also easy to distinguish.

Actual Motion State: In contrast to these two cases, a large
acceleration is sensed when the device is being moved by the



user, which is represented by the dash-dot line in Figure 3.
Hand movement differs as it is normally a one-time motion
like picking up a device from the desk, or taking a device
out of a pocket. A one-time motion leads to a single large
acceleration spike, and so the cycle identification algorithm
as introduced in Section III-A will not find multiple similar
cycles from the accelerometer raw data.

Other Consideration: Some users enjoy playing video
games that use the accelerometer as control input. If a certain
motion happens to be repeated frequently enough to appear
within the cycle detection window used in Section VI (this
is unlikely), our algorithm would identify these motions as
motion cycles and add them to the database for the user.

V. DATA COLLECTION

The next step after Movement Detection for both Training
and Testing modules is Data Collection. On the training side,
our approach entails the device collecting accelerometer data
each time the user inputs the correct unlock password, for ten
minutes or until user termination, and only if the accelerometer
registers movement. Our experiment indicates desirably low
error rates appear after collecting training data for one week,
as discussed in section VIII on Evaluation.

In the event that a user begins to suffer higher false alarm
rates, due to changing habits, this training approach may be
undertaken anew to regain high accuracy. Also, should a user
wear strikingly different clothes or hold the mobile device in
different pockets from time to time, training will need to be
performed for each such case. This will not force the user to
frequently retrain, but rather to simply add some new behaviors
to the database from time to time.

For day-to-day testing, after the training period is complete,
our approach requests gathering of accelerometer data when-
ever significant motion is detected. As previously mentioned,
we do not wait until the device is unlocked as in second-order
authentication schemes, in favor of immediate theft detection.

VI. FEATURE EXTRACTION

We here enumerate the technical details of the feature
extraction component of our system. In doing pattern syn-
chronization for input data, we identify step cycle width and
partition the data accordingly for later use in the database
and matching components. The complications enumerated in
Section III-A are all addressed by this algorithm. At a high
level, we find eligible local minima and pick a starting point,
testing other nearby minima for their ability to define a suitable
data partition width, and, if none work, repeating this for other
starting points as necessary until a good cycle is found.

A. Possible Cycle Delimiter Search

Here we wish to take the raw accelerometer data and isolate
from its local minima a set of points which may separate
out the step cycles. As a mobile device may be oriented in
any direction, we first remove the directional components of
acceleration using a=

√
a2x + a2y + a2z , where ax, ay and az

represent the values read from each axis [6].
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Fig. 4. Relative points and negative peaks

Owing to our usage of a sliding window later in the process,
for our next steps we remove from consideration the first and
last few moments of data. This padding is included in the
Candidate Endpoint Test in Section VI-B but excluded from
the Window Placement process as we would otherwise be
searching outside of the dataset. This appears as dashed lines
in the proceeding figures.

Next, local minima are found throughout the trimmed data,
simply distinguished as those points whose neighbors are both
of larger value. All points plotted on the acceleration data in
Figure 4 are local minima, but as stated in Section III-A, we
are concerned only with the large downward peaks. The min-
ima on those downward peaks are our step delimiters, which
are a subset of all local minima. Additionally, though not
visible on these figures, some minima created by accelerometer
noise or irregular human behavior are lower than our step
delimiters.

With the understanding that all valid step delimiter minima
should be some distance below 1g, the acceleration due to
gravity, we set this threshold and analyze the set of local
minima satisfying it. We sort the minima in ascending order,
then apply a sliding window over these points to determine
what range contains the highest number of minima. We found
a sliding window of width 0.15m

s2 was able to isolate likely
step delimiters from outliers most effectively. Figure 4 shows
the resultant set of step delimiters for a sample. To proceed,
we choose at random one such delimiting point.

B. Representative Cycle Search

This process finds a step cycle length which will effectively
split the acceleration data along the cycle starting points. This
cycle we call the representative cycle, as it will appear similar
to most cycles in the data, thereby providing a template for
this data partitioning. We begin with the set of likely cycle
delimiters and one of them chosen as a test delimiter. In what
follows, we search for what may be the other end of the cycle
and test to see if that cycle is a representative cycle.

Window Placement: We restrict the rest of the data to a
window around the test delimiter, containing candidate points
for the other end of the cycle. This restriction narrows the
search space for faster processing. Noting though that invalid
points may still enter this set, it should contain multiple can-
didate endpoints and should be wide enough to accommodate
any valid step cycle. For example, some small noise around



the edge of a step cycle might result in two local minima at
that edge, one of which should be ignored. Our experiment
employed a range of 200 data points on either side of the
delimiter and found this befitting of all our volunteers’ data
sets.

Candidate Endpoint Test: We first test the closest candi-
date endpoint within the window and move outward to other
points if necessary. We use this candidate’s distance from the
test delimiter to define the test block size. We partition the data
set by this test block size and then measure the correlation
between each constituent block. In this paper, we use the
statistical correlation for its simplicity and rapidity, which is
demonstrated in section VII-D. If the correlation is sufficiently
high between a sufficient number of blocks, this indicates the
test delimiter and candidate endpoint enclose a valid step cycle
representative of most other step cycles within the data, i.e.
the representative cycle. Conversely, if the correlation is low,
another candidate stopping point within the window is selected
and the process repeated.

Search Repetition: Should this search return no endpoint
that defines a representative cycle, we choose another candi-
date from our set of possible step cycle delimiters. We repeat
the window placement and candidate endpoint tests for this
new delimiter, and if necessary, continue choosing others not
already tested until one yields a representative cycle.

C. Data Partitioning

Having discovered a representative step cycle, we may now
partition the data accordingly so that it may be stored in the
Database for training or sent to the Matching component for
testing. The representative cycle defines our working cycle
size, by number of data points. As the accelerometer collects
data at a roughly constant rate, this corresponds to a static time
frame of length equal to the duration of the individual’s stride.
Working outward from our representative cycle, we partition
the data into blocks of that length. This results finally in parsed
cycles such as those in Figure 2.

VII. MATCHING METHODS

After pattern synchronization, the individual steps are iden-
tified and extracted from the raw accelerometer data. Then, the
behavior classification procedure groups similar steps (i.e., the
steps that are highly correlated) together to form a behavior set
of the user. As discussed earlier, a user may exhibit different
behaviors like walking and running. Thus, when the training
phase is complete, the database will include multiple behavior
sets, each containing the step cycles that are extracted from
the corresponding behavior.

The matching phase compares unknown step cycles with the
cycles stored in the training database to identify any unautho-
rized moves. Let B = {S1,S2, ...,Sn} denote the set formed
by the behavior sets, where Si = {si1 , si2 , ..., sim} is the i-th
(1 ≤ i ≤ n) behavior set and sij is the j-th (1 ≤ j ≤ m) step
cycle in Si. Further let Su = {su1 , su2 , ..., sul

} denote the
behavior set formed by the step cycles from unknown users.

A. Traditional Method: All Cycles

In this strategy, we compare all the elements in Su against
all the elements in each Si ∈ B. Specifically, ∀Si ∈ B, we
compare all sij ∈ Si to all suk

∈ Su and threshold the average
of the comparison results to determine if Si ≈ Su. A positive
result indicates the unknown behavior Su belongs to the owner.

With n behaviors in the database, m cycles per behavior,
and l cycles in the unknown behavior, the total number of
comparisons is therefore nml. Sufficiently large m and l
(enough training and testing cycles) should conceptually result
in the best accuracy, because this gives the broadest view
of the data. This does, however, require the largest number
of comparison calculations that can be made between the
database and unknown behavior trace. For the more high-end
devices, this may be reasonable, but we offer additional meth-
ods focused on optimization, for more universal application.

B. Method 2: Random Cycle Subset

To introduce this method, we note that the step cycles
classifying each particular behavior during cycle extraction
were those strongly correlated with each other as introduced in
Section III-B. Therefore, a randomly selected subset of these
will continue to strongly correlate with the rest of the set,
which should mean similar accuracy in matching, but with
only a static number of comparisons independent of database
size. Namely, ∀Si ∈ B, we choose a random subset SiRS

⊂ Si
(subscript RS stands for “random subset”). We choose a subset
SuRS

⊂ Su as well. All random subsets are of a pre-configured
size q which we derive through experimentation to be large
enough to represent the original behaviors. Then, ∀Si ∈ B,
we compare all sij ∈ SiRS

to all suk
∈ SuRS

to determine if
Si ≈ Su, averaging and thresholding as before.

Holding n behaviors in the database, p cycles per behavior,
and q cycles in the unknown behavior corresponds to npq total
comparisons, compared with nml for the Traditional method.
With p � m and q ≤ l, the processing required is orders of
magnitude smaller for the typical user. Nevertheless, as with
any thresholding system, some step cycles are most correlated
with others, while some are consistent enough to be included
in the behavior but aren’t those best cycles. Ideally we would
choose these “signature” cycles to represent a behavior, but
if an imperfect step cycle is randomly chosen, it will play
a comparatively negative role in making the final matching
decision and hence reduce the overall detection accuracy.

C. Method 3: Signature Cycle Subset

To solve this challenge, we propose to identify and use for
comparison these “signature” training and testing step cycles.
The comparison protocol is similar to that of the random
cycle subset method, choosing ∀Si ∈ B a subset SiSS

⊂ Si
(with subscript SS referring to “signature subset”) and a subset
SuSS

⊂ Su. ∀Si ∈ B, we compare all sij ∈ SiSS
to all

suk
∈ SuSS

to determine if Si ≈ Su.
First, however, we must detail how to select a signature

subset. The cycles included should achieve the highest consis-
tency with the others in this behavior, to best reflect the typical



motion behavior of the user. We define the most representative
step cycle below:

Definition 1: (Most Representative Step Cycle) The step
cycles extracted from the accelerometer readings form the
set S. The most representative step cycle s∗ is defined as
argmax

s∈S

∑
x∈S F (s, x), where F (·) is the comparison func-

tion described in Section VII-D. Equivalently, s∗ is the step
cycle that results in the highest value of

∑|S|
i=1 F (s, xi), where

xi is the i-th step cycle in S.
In a simple extension, the v most representative step cycles

in a behavior S are those resulting in the v highest values
of

∑i=|S|
i=1 F (s, xi). These cycles are considered the signature

cycles and added to SSS . An important aspect of this process
is the fact that it may be done for the training dataset once
training is complete. This preprocessing trims the database
to hold only the signature cycle subsets which lowers its
data storage footprint significantly compared to the traditional
Methods and Method 2. Additionally, the total number of
comparisons is nvq, which q is the number of cycles in the
unknown behavior, like Method 2.

D. Comparison Functions
A step cycle is a portion of the accelerometer reading, and

so is a vector of accelerometer sample points. To compare two
vectors of step cycles, we may utilize existing classification
tools as mentioned before (e.g., K-S statistical test [12],
Total Variation Distance [1], or statistical correlation [8]).
Regardless of the type of classification tool, each returns
a comparison outcome on whether or not two vectors are
similar.We calculate the average of the comparison outcomes
and compare it with a threshold to make a matching decision.

The proposed scheme does not impose limitations on which
kind of comparison tools should be used. In this paper, we con-
sider the statistical correlation for its simplicity and rapidity.
Specifically, let x = [x1, x2, ..., xm] and y = [y1, y2, ..., yn]
denote two vectors of length m and n respectively. The
correlation between x and y is calculated by

∑i=min(m,n)
i=1 xiyi

min(m,n) .
Assuming that we made a total of γ comparisons between
RT and RU , each comparison returning a correlation value,
we then compare the average of the γ correlation values to
a threshold. If the average is larger than the threshold, then
the unknown behavior is identified.Otherwise, the unknown
behavior does not match the current behavior set and it is
compared to the next behavior set until a match is identified. If
no matching is found after all the behavior sets are exhausted,
the move is considered unauthorized.

E. Methods Discussion
We will provide a thorough examination of the effectiveness

of each method in the following section on Evaluation, but
compare the methods more conceptually here with regards
to computational complexity. The traditional method is the
slowest. In our experiment, after two weeks of training, the
user converges to 22 behaviors and each behavior comprises
300 step cycles. We used 10 cycles extracted from the un-
known data for comparison. Thus, the number of comparisons

is 66, 000 (22 × 300 × 10), for which we find an accuracy
of 97.5% distinguishing between users and 97.8% identifying
users as themselves.

Method 2 is expected to have a good performance in
detection accuracy when the value of p (the number of step
cycles in each training behavior) and q (the number of step
cycles in the known behavior) are large enough to represent the
original behaviors. So how large should p and q be? We find in
experiments that p = 100 and q = 10 gives an accuracy similar
to the traditional method, while the number of comparisons
is 22, 000 (22 × 100 × 10). This means that Method 2 is
theoretically 3 times faster than the traditional one for the same
accuracy. The performance becomes unstable when there are
not enough cycles to represent the whole behavior, i.e., when
p and q are small. In particular, when p = 1 and q = 10,
accuracy lowers to 94.6% distinguishing between users and
86.7% identifying users as themselves.

For Method 3, we find in experiments that the proposed
detection system can achieve a relatively good performance
using only a single signature step cycle (the most representa-
tive one) from each training behavior. In this case, p = 1 and
the number of comparisons becomes 220 (22×1×10), which
is theoretically 300 times faster than the traditional method.
Nevertheless, the achieved accuracy is similar to the traditional
method with 96.4% distinguishing between users and 97.8%
identifying users as themselves.

VIII. EVALUATION

Our experiment involved 45 volunteers comprising 10
women and 35 men. All are students or researchers in our
university, with ages ranging from 18 to 50. During the data
collection sessions, each participant was instructed to walk and
run 20 meters, holding the data collection device in a variety
of positions. These included in the left hand and right hand,
in a bag held by the left and right hand, and in a backpack,
for a total of 5 locations per movement type.

We first examine the correlation threshold for ensuring step
cycles are extracted correctly. Next, we present our evaluation
metrics and methodology, following this with a discussion on
comparison threshold optimization for each of our matching
methods. Training and testing time complete the evaluation.

A. Cycle Extraction

We cover in Section VI the technical details involved with
partitioning raw data into step cycles and here ensure that the
number of cycles extracted matches with our observation of
the data. In particular, a cycle width is chosen which cuts the
data into a series of blocks that correlate highly with each
other. Through this experiment we define the term “highly.”

Our observations of the raw data indicate volunteers took
40 steps on average, for each motion and device location trial.
Some took more or less than that, but an average of 40 steps
suggests that we need a correlation threshold that results in an
average of 40 steps for each test. We test thresholds ranging
from 0.6 to 0.9, and plot the results in Figure 5. This illustrates
that with a correlation threshold of 0.8, an average of 40 cycles
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are extracted from each trial, as desired. We use this threshold
for cycle identification throughout all further evaluation.

B. Matching Methods

The metrics we use to evaluate our three matching meth-
ods in the following sections are Distinction and Self-
Identification. Distinction refers to the differentiation of indi-
viduals from each other, and represents the recognition of the
current device holder is a thief. Self-identification refers to
the matching of users to themselves, representing the system
verifying the current device holder as the owner. Naturally,
we wish for these metrics to yield a high percentage and their
inverse error rates to be low. The Mis-Detection error rate
is the inverse of the distinction rate, showing the portion of
volunteers who would be able to impersonate some others.
Similarly, the False Alarm error rate indicates the number of
volunteers not correctly identified as themselves, who would
be wrongly flagged as thieves.

Ascertaining these error rates involves a comparison of each
volunteer’s data to that of every volunteer. Mis-detection is
defined mathematically as the number of tests where we cannot
distinguish between individuals. For 45 people, each analyzed
against every other (but not themselves), this is some fraction
of 1980 tests. The false alarm rate describes the amount that
individuals cannot be recognized as themselves, so for 45
people compared only to themselves the false alarm rate is a
portion of 45 such tests. Hence, to calculate the mis-detection
rate, we use the full data sets for each volunteer, but for the
self-comparison required to find the false alarm rate, we use
half a user’s data for training and the other half for testing.

Our evaluation testing differs slightly here from what would
occur in practice, as we are attempting to match users’ full
databases to each other, rather than one sample behavior vector
to a database. In other words, in practice we collect a single
test behavior and try to find a match, but for this evaluation
we are trying to match any of the behaviors in one database
to any in the other. As such it should be noted that this is akin
to a thief having several chances to steal a device, so the low
error rates are actually an upper bound on the error.

1) Method 1: All Cycles: To refresh, our preliminary
matching method uses all available cycles to inform its de-
cision, comparing cycle in one data set to every cycle in
the other, and finding the average of these correlations. This
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Fig. 9. Mis-detection and false alarm rates for Method 2

averaging reduces the impact of noise to better reflect the situ-
ation as a whole, so this method should be the most accurate.
Figure 6 depicts a cumulative distribution function (CDF) view
of our partitioning efforts, suggesting a correlation threshold
somewhere around 0.75 is best. Most self-identification tests
find correlations larger than this value, and most distinction
tests arrive at a lower value.

With this realization we optimize the error rates by varying
the correlation threshold between 0.6 and 0.85, with results
visible in Figure 7. We find an intersection of the error rates
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around a threshold of 0.75, which allows only 2.5% mis-
detection and 2.2% false alarm rates. This corresponds to
97.5% distinction and 97.8% self-identification rates, which
is indeed nicely accurate.

2) Method 2: Random Cycle Subset: This method revisits
the use of correlation average but only for a static number of
cycles, in an effort to optimize processing time. Choosing a
number p of cycles randomly from each behavior, we compare
each from one behavior to every one from the other behavior,
and thereby limit to a fixed number of computations. A
threshold is then applied to the average correlation between
this subset of cycle pairs. In Figure 8, the CDF reports
distinction and self-identification curves for various p. While
the distinction curves are fairly similar for different p, there
is some separation in the self-identification curves. A higher
p, of 100 cycles, is more desirable than the low p of 1 cycle.

Reviewing Figure 9 and the error rates for four p values
depicted there, the degradation of accuracy with lower p is
visible. We find that while an p of 1 causes undesirable error
rates, an p of 100 results in a high accuracy, which is the same
as the accuracy of the Method 1. The error rates for p equal to
20, 10, and 5 are 2.6%, 2.8%, and 3.9%, respectively, for mis-
detection, and 4.4% in all cases for false alarms. This method
finds that p = 100 is large enough to represent the original
behaviors and achieve comparable accuracy to Method 1.
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Fig. 13. Mis-detection and false alarm for Method 2

3) Method 3: Signature Cycle Subset: The final matching
method builds from the random cycle subset method and
attempts to decrease the training database storage footprint,
through identifying behavior representative cycles after train-
ing and storing only those. Again we must choose a number v
of cycles to use from the training behavior sets, but unlike the
previous method we only store these cycles. We alter testing
behavior set length independently to compare with these v
cycles per training behavior. Specifically, we try testing set
sizes of 10 cycles (20 steps) and 5 cycles (10 steps), and
compare them with 10 signature cycles and 1 signature cycle.
Each cycle from the database’s behavior sets is compared
with all cycles from the test behavior, and their correlations
averaged as before.

Figure 10 indicates that the accuracy is rather similar among
these options, meaning that a user can opt for slightly lower
accuracy in order to achieve a faster detection time. That said,
Figure 13 indicates that with a correlation threshold of 0.814,
a training size v of 10 cycles and a testing size of 10 cycles
(20 steps) provides the best accuracy with a mis-detection rate
of 3.6% and false alarm rate of 2.2%. Although it is not as
good as the Method 1, this method saves a lot of comparison
time, one of the important goals in our paper.

C. Training Time

A good anti-theft system should not be intensive in its initial
setup. To ensure that our system satisfies this requirement, we
analyze the effects of varying training times on the resulting
accuracy. Specifically, we asked one volunteer to continue
collecting data every day for two weeks. We used the first half
of this data as the training set and the second as the testing
set. Then we included increasing portions of the training set
and measured the accuracy against the full testing set. The
accuracy relative to number of training days included is shown
in Figure 11. With more training data available, the false alarm
error rate, otherwise described as the difficulty in identifying
the user as that individual, decreases sharply.

D. Detection Time

Our application also requires the quick detection, so that a
thief may be identified before eluding the owner. Detection
time is measured over two components, data collection and
data analysis. The former refers to the number of steps that



the attacker must take before an accurate decision can be made,
while the latter refers to the processing time of that decision.

For data collection, we reiterate the success of the cycle
subset matching method using ten randomly chosen step cycles
from training and testing datasets, as well as the success of the
signature subset method using five or ten cycles. We conclude
then that 10 to 20 steps are all that is necessary to provide
a testing dataset with our stated accuracy of 96.4% to 97.5%
distinction and 97.8% self-identification.

Data analysis time is the time required for parsing the
collected data into step cycles and then behavior data, followed
by comparison with the database. This time varies with the
matching method used for comparison, so a CDF of processing
time stemming from different methods appears in Figure 12.
“AVG” refers to the traditional method of averaging all data,
and the lines prefixed “p=” correspond to different values of p
for the random cycle subset method. “V” is the average case
for the signature cycle subset method, the variants of which all
performed roughly the same. The traditional method is clearly
slowest, while the random subset method has varying runtimes
based on the subset size. The signature cycle subset method
with all tested parameters is very close to the random subset
method with v = 1, confirming it as the most cost-efficient
method. This method provides a match decision in fractions of
a millisecond, still with the above-mentioned high accuracy.

TABLE I
POWER CONSUMPTION

State Initial 20 Mins 40 Mins 60 Mins
Motion state 54% 52% 50% 47%
Non-walking 47% 47% 46% 46%

E. Power Consumption

Mobile device battery life is precious, and, as such, we
must verify that our system incurs sufficiently low overhead to
maintain usability. As mentioned in Section IV, our approach
only processes data when the device is in the actual motion
state. The rest of the time, no computation is necessary aside
from cursory supervision of the accelerometer, so battery life
will be less affected. We monitor the power usage of our
approach in different states for a one hour duration using an
iPhone 6 plus; table I shows the result. The initial power of the
device is 54%, and after one hour in the walking state, 47%
of power remains, for a 7% power consumption per hour of
walking state. Likewise, with an initial battery status of 47%,
46% of power remains after one hour of processing in the
non-walking state for a consumption of roughly 1% per hour
while monitoring for state changes. To better quantify these
results, consider a two-day study by The New York Times
in 2003 tracking walking habits of 1,136 adults around the
United States. The study found that Americans take about 30
to 40 minutes of walking per day on average [13]. With this
duration of walking state processing and the remainder of 24
hours time monitoring for walking state change, our approach
requires at most 3.5% to 4.7% of the battery each day.
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IX. CONCLUSION

We proposed a fast anti-theft system that can detect au-
thorized movement of mobile devices. Simply speaking, we
perform authentication whenever the device is moved via
walking. To design such a system, we created motion syn-
chronization techniques that can extract step cycles from the
raw accelerometer data to enable comparisons between indi-
viduals. We also created a representative matching algorithm
to compare the “signature” step cycles for a behavior instead
of comparing all possible data, for improved accuracy and
reduced comparisons. We performed extensive experimental
evaluation using the accelerometer data collected from 45
volunteers. Our experiment results show that the proposed
system can successfully detect an unauthorized move within 10
to 20 steps by a detection accuracy of 96.4% to 97.5%, while
also distinguishing the current move as by the owner 97.8%
of the time, and requiring at most 4.7% battery overhead for
the typical user.
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