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Detection of Faults and Attacks Including False Data
Injection Attack in Smart Grid Using Kalman Filter
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Abstract—By exploiting the communication infrastructure
among the sensors, actuators, and control systems, attackers
may compromise the security of smart-grid systems, with tech-
niques such as denial-of-service (DoS) attack, random attack, and
data-injection attack. In this paper, we present a mathematical
model of the system to study these pitfalls and propose a robust
security framework for the smart grid. Our framework adopts
the Kalman filter to estimate the variables of a wide range of
state processes in the model. The estimates from the Kalman
filter and the system readings are then fed into the χ2-detector
or the proposed Euclidean detector. The χ2-detector is a proven
effective exploratory method used with the Kalman filter for the
measurement of the relationship between dependent variables and
a series of predictor variables. The χ2-detector can detect system
faults/attacks, such as DoS attack, short-term, and long-term
random attacks. However, the studies show that the χ2-detector is
unable to detect the statistically derived false data-injection attack.
To overcome this limitation, we prove that the Euclidean detector
can effectively detect such a sophisticated injection attack.

Index Terms—Cyber physical system, false data injection
attack, Kalman filter smart grid, security.

I. INTRODUCTION

THE POWER grid is one of the important infrastructural
backbones that has a deep impact on economy as well

as our daily activities. Failures in the power grid often lead
to catastrophic effects as the ones in New York (2003) and
Mumbai (2012). Though both of these failures resulted due
to faults in the system, security failures can also result in
similar consequences, if not worse. With the advent of new
technologies, the secluded power grid system is being replaced
by a grid, which is a typical smart cyber physical system (CPS)
that has more embedded intelligence and networking capability.
In such smart-grid systems, cyber and physical components
work in a complex coordination to provide better performance
and stability. Sensors are equipped throughout the system to
monitor various aspects of the grid, such as the meter and
voltage fluctuations in these systems. The collected information
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Fig. 1. Block diagram for a smart-grid system.

from the sensor networks helps provide feedback to the physical
power grid devices. Hence, such a CPS involves two-way
communication between the controller system and the physical
components as shown in Fig. 1.

Since the smart grid relies on wired/wireless networking
infrastructures to integrate the control system and physical
power grid system, it is important to understand and defend
cyberattacks that emerge from the networking and control
infrastructures. The addition of wired/wireless communication
capabilities in the existing power grid system results in in-
creasing complexity and potentially more holes in security. The
smart-grid system can incorporate traditional security measures
(e.g., intrusion detection and firewall) to prevent rudimentary
attacks, such as the ones in traditional data networks. Lots
of studies in the literature revolve around the security of data
communication from the physical components to the central
controller or among different elements (e.g., sensors and ac-
tuators). For example, the authors in [1] propose an intrusion
detection system to detect malicious nodes in the smart-grid
wireless network. Similarly, a distributed intrusion detection
system is discussed in [2].

Recently, many emerging attacks specifically targeting the
communication and control systems in smart grid are exposed
[3]–[8]. For example, security threats include the tampering of
physically unguarded monitoring sensors in the grid system
leading to false data. A general strategy to identify physical
tampering is to deploy an estimator and a detector in the
controller. The estimator compares the calculated estimates
with the actual readings and verifies them [3], [4]. The detector
triggers an alarm when the estimated states and measured states
do not agree with each other. In other words, a remarkable
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difference between the estimated and measured states signifies
either a fault or a possible attack on the system. However, the
studies in [3] and [4] show that a new type of attack called a
False Data Injection attack can be directed at the system if some
system parameters are known to the attacker. To the best of our
knowledge, no existing estimator and detector combination has
been examined in the literature to effectively detect different
types of attacks in the power grid including the False Data
Injection attack.

In this paper, we present a security framework for smart
grid using the Kalman filter (KF). The Kalman filter generates
estimates for state variables using the mathematical model for
the power grid and the data obtained from the sensor network
deployed to monitor the power grid. A χ2-detector can then
be employed to detect the discrepancies between the estimated
data and the measured data, and trigger alarms. The χ2-detector
can effectively detect attacks, such as the DoS attack and ran-
dom attack, even though the states of the system do not remain
constant at various time periods. However, the study shows that
the χ2-detector cannot detect the statistically derived False Data
Injection attack. For the first time, we comprehensively inves-
tigate the sophisticated False Data Injection attack, together
with the proposed KF framework and propose an additional
detection technique using the Euclidean distance metric. Our
primary contributions include: 1) we propose a mathematical
model together with the KF to detect possible attacks and faults
on the smart-grid system; 2) we investigate the performance of
the exploratory method χ2-detector, in identifying faults and
random attacks; 3) we analyze the limitation of the χ2-detector
in detecting the statistically derived False Data Injection attack
and accordingly propose a new Euclidean detector to be cou-
pled with KF; and 4) we demonstrate the effectiveness of the
proposed approaches via extensive simulations and analysis on
practical systems.

The rest of this paper is organized as follows. Section II
presents the motivation and the related work on smart-grid
security. Section III describes the proposed framework, the
mathematical model of the power grid system, and the Kalman
filter estimator. Section IV presents the two detectors imple-
mented in the framework in order to detect various attacks and
failures in the system. In Section V, performance results of
the proposed framework and the observations are discussed.
Finally, Section VI presents the conclusion.

II. MOTIVATION AND RELATED WORK

In this section, we review various security schemes studied
in the literature. Most of the papers discussed in this section
deal with the security of data communication using the rudi-
mentary techniques, such as intrusion detection, cryptography,
physical layer security enhancement, and the utilization of
recommendation-based social network infrastructure (for ex-
ample, [6]–[10]). The existing studies on the security of the
smart grid can be broadly categorized into three categories.
The work in the first category deals with the wired/wireless
networking security among cyber components in the smart grid
[1], [2], [5]–[9]. The papers in the second category investigate
the early detection of anomalies in the system. Smart grid is a

real-time system and faults/attacks must be handled as soon as
possible. The early anomaly detection schemes [10], [11] can
proactively protect the system. The work in the third category
applies the control theories in the security process using various
state estimation and detection techniques [12]–[14].

A wireless mesh network architecture was proposed in [1]
for the smart-grid system and an intrusion detection scheme
called smart tracking firewall was introduced. To overcome the
security pitfalls, such as signal jamming and eavesdropping, the
authors in [1] also investigated the anti-jamming, physical-layer
security technique coupled with the smart-tracking firewall.
The proposed firewall consists of two agents: 1) intrusion
detection agent and 2) response agent. The agents maintain
two lists of misbehaving nodes called the black list and the
gray list. These lists keep tracking the malicious nodes in the
network. Another distributed intrusion detection scheme was
discussed in [2], which deploys an intelligent module and an
analyzing module along with an artificial immune system to
detect and classify malicious data as well as possible attacks
on the smart grid. In [5], secure estimation of the system states
is discussed. The channel capacity requirement to ensure negli-
gible information leakage to the adversary regarding the system
states and control message is studied in this paper. A message
authentication scheme was proposed in [6] to achieve the
mutual authentication among the smart meters in the smart grid
using shared keys and hash-based authentication techniques.
Another signature-based message authentication scheme was
proposed in [7], which employs the multicast authentication
to reduce the signature size and communication bandwidth
at the cost of increased computation. As suggested in this
paper, such an authentication scheme is more desirable in the
smart grid, where there is a limitation in the storage size and
bandwidth. The work in [8] uses the data concatenation and
random drop schemes to defend a traffic analysis attack, and the
study in [9] is about defending the Internet-based load altering
attack.

Unlike the papers discussed before that focus mainly on the
protection of data communication in the smart grid, the authors
in [10] presented an early warning scheme to predict/prevent
anomalous events in advance. The proposed approach consists
of detection, reaction, data recollection, and alarm-management
components. Anomaly detection in the existing power grid
substation was studied in [11], which presents an anomaly in-
ference algorithm based on the combination of the transaction-
based model, hidden Markov model, and feature-aided
tracking.

An attack/fault in the smart-grid system is always reflected in
the form of change in either voltage, current, or phase [12]. The
work in [12] proposed a control-theoretic adaptation framework
for the system-level security of the smart grid. The control-
theoretic framework uses the state estimation technique to esti-
mate the data from the remote terminal units and applies power
security analysis tools to detect attacks on the system. However,
the proposed distributed state estimation owns slightly larger
data estimation error [12]. Similarly, the protection for the set
of meter measurements or changes was discussed in [13] and
[14]. The identification and verification of the set of sensor
measurements that are required to be protected in order to detect
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Fig. 2. Security framework for the smart-grid system.

the existence of a False Data Injection attack in the smart grid
are discussed in [14].

As discussed before, much of the present work is based
on various security techniques that are originally developed
for securing the Internet data communication. While these
techniques are effective in securing the Internet, these security
techniques alone are not sufficient to deal with attacks in a more
complex CPS, such as the smart-grid system [5]. As stated in
[5], the existing security approaches are either 1) not viable;
2) incompatible with the smart grid; 3) not appropriately scal-
able; or 4) not adequate. Particularly, the existing techniques did
not address the new class of attack called the False Data Injec-
tion attack [3]. This type of injection attack is undetectable by
detectors used in the existing state-estimation security frame-
works [3], [4]. Hence, this paper presents a framework, based
on a state-space model derived from the voltage flow equations,
to defend different types of attacks and faults, including the
False Data Injection attack. We show that the False Data Injec-
tion attack cannot be detected using a traditional combination
of estimator and detector (i.e., KF and χ2-detector). Then, we
propose a different detector based on the Euclidean distance
metric to detect the complicated False Data Injection attack on
the power grid system.

III. PROPOSED FRAMEWORK FOR SMART GRID

USING THE KALMAN FILTER

In this section, we present the detailed description of the
security framework for smart grid using the Kalman filter (KF).
The framework is capable of detecting various attacks, includ-
ing short-term and long-term random attacks along with the
powerful False Data Injection attack on the power system. We
develop a state-space model (as shown in Section III-A) from
the three-phase sinusoidal voltage equations, to integrate the
technique of the Kalman filter. Without loss of generality, we
assume the use of voltage sensors to measure the state variables
(e.g., amplitude and phase of the voltage) in the framework.
The sampling rate for the sensors is assumed to be around
16 samples per 60-Hz cycle, that is, about 960 samples/s for
medium-to-low data-rate production [15].

Fig. 2 shows the proposed security framework where the KF
estimates the values for the state variables based on the system
state and the data from numerous sensor readings. The esti-
mated values generated by KF and the observed values for the

state variables are fed into the detector. The detector compares
two state vectors (consisting of all the state variables). If the
two differ from each other significantly and are above a certain
precomputed threshold, the detector triggers an alarm to signify
a possible attack on the smart grid. As the literature study
shows, the χ2-detector is a typical choice for the KF estimators
[16] when the residue of the KF equations follows Gaussian
distribution and g(t) (as in (32)) follows the χ2 distribution [4].
Attacks such as the DoS attack and random attack are readily
detected by the KF and χ2-detector combination. However, the
False Data Injection attack can bypass such detectors and may
remain undetected [4]. Hence, we use an additional detector,
based on the Euclidean distance, along with the χ2-detector.
The Euclidean distance detector reconstructs the sinusoidal
voltage signal from the state parameters and calculates the
difference between the estimated and observed voltage signals.
If the difference is larger than a precomputed threshold, the
detector triggers an alarm.

A. State-Space Model

The power system deploys sensors or meters, such as phasor
measurement units, to measure the system state at various loca-
tions and time to ensure smooth operation of the power system.
These meters are able to measure current phase and amplitude
[17]. The measurements obtained from these meters/sensors are
the state variables that are reported to the central controller via
the wired/wireless communication infrastructure. As stated in
[3], the state variables may include bus voltage, angles, and
magnitudes. Therefore, the state-space model should reflect
these properties of the power system. The study in [12] in-
dicates that an attack or fault in the power system is always
reflected in the form of change in either voltage, current, or
phase. Without loss of generality, we derive the state-space
model from the power grid voltage signal.

The voltage signal can be represented as a sinusoidal wave
[18] as shown in (1). The equation represents voltage as a
function of amplitude (Av), angular frequency wt, and phase
φ at discrete time. Equations (2) and (3) are mentioned here to
represent the three-phase voltage signal. For simplicity, we only
consider (1) in the process of developing the model

V1(t) =Av cos(ωt+ φ) (1)

V2(t) =Av cos

(
ωt+ φ− 2π

3

)
(2)

V3(t) =Av cos

(
ωt+ φ− 4π

3

)
. (3)

Equation (1) can be expanded as follows:

V1(t) = A∗
v cosωt∗ cosφ−Av∗ sinωt∗ sinφ. (4)

Assuming the angular frequency is relatively constant over
time, we consider amplitude and phase as the variables in the
state-space representation. The equation then becomes

V1(t) = x1∗ cosωt− x2∗ sinωt (5)
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Fig. 3. Power grid system.

where x1 = A∗
v cosφ and x2 = A◦

v sinφ are defined as the state
variables. Assuming there is no additional delay in the system
and considering random noise or small errors picked up by the
system, we have (6) representing the state equation over time[

x1(t+ 1)
x2(t+ 1)

]
=

[
1 0
0 1

] [
x1(t)
x2(t)

]
+ w(t). (6)

Equivalently

x(t+ 1) =

[
1 0
0 1

]
x(t) + w(t) (7)

where x(t) =
[
x1(t)
x2(t)

]
and w(t) is the process noise. Process

noise represents the unmodeled system dynamics or the distur-
bance inputs in the system model.

The actual voltage signal for the current state using the
nonstationary deterministic vector [cosωt− sinωt] can be ob-
tained using (4) and can be written as shown in (8), where γ(t)
represents the measurement noise

y(t) = [cosωt − sinωt]

[
x1(t)

x2(t)

]
+ γ(t). (8)

B. Kalman Filter

Fig. 3 shows the control system with the KF embedded for
the estimation of the state vector and detector for the detection
of attacks or faults. As shown in Fig. 3, x(t) denotes the output
of the state estimator that is fed to the controller and Z−1 is the
control system feedback. The observations or sensor readings
y(t) are forwarded to the estimator at a regular time interval
denoted by Δt. At each time step Δt, the estimator of the
system generates estimated readings based on the estimates
x(t− 1) from the previous time step and the real-time sensor
readings y(t).

To apply the KF technique, the state equation can be
written as

x(t+ 1) = Ax(t) + w(t) (9)

where A =

[
1 0
0 1

]
.

From (8), the observation equation for the KF can be
written as

y(t) = C(t)x(t) + v(t). (10)

Here, y(t) is the measurement vector collected from the sen-
sors C = [cosωt− sinωt]; v(t) is the measurement noise and
assumed to be white Gaussian noise with mean 0 and standard
deviation σ, which is independent of the initial conditions and
process noise.

The KF can then be applied to compute state estimations
x̂(t). Let the mean and covariance of the estimates be defined
as follows:

x̂(t|t) =E [x(t), y(0), . . . ., y(t)] (11)

x̂(t|t− 1) =E [x(t), y(t), . . . ., y(t− 1)] (12)

P (t|t− 1) =Σ(t|t− 1) (13)

P (t|t) =Σ(t|t− 1). (14)

Here, x̂(t|t) is the estimate at time t using measurements up to
time t, and x̂(t|t− 1) is the estimate at time t using measure-
ments up to time t− 1. Similarly, P (t|t) is the covariance of the
estimates at time t using readings up to time t, and P (t|t− 1)
is the covariance of the estimates at time t using data up to time
t− 1. Now, the iterations of the KF can be written as

Time update

x̂(t+ 1|t) =Ax̂(t) (15)

P (t|t− 1) =AP (t− 1)AT +Q. (16)

Equation (15) projects the state and covariance estimates at
the t+ 1 time step from the t time step. Here, A is obtained
from the state-space model in (6), and Q is the process noise
covariance matrix.

Measurement update

K(t) =P (t|t−1)C(t)T
(
C(t)P (t|t−1)C(t)T +R

)−1
(17)

P (t|t) =P (t|t− 1)−K(t)C(t)P (t|t− 1) (18)

x̂(t) = x̂(t|t− 1) +K(t) (y(t)− C(t)x̂(t|t− 1)) . (19)

Equations (17)–(19) represent the measurement updates of
the KF. K(t) is the Kalman gain, and R is the measurement
noise covariance matrix. Equation (19) is used to generate
a more accurate estimate by incorporating the measurements
y(t). The initial condition is x(0| − 1) = 0, P (0| − 1) =
Σ [12]. As shown in [16] and [19], the Kalman gain can
converge in a few steps and operate in a steady state. Given
a training period such that the filter knows the Kalman gain
before the estimation, we have

P
Δ
= lim

k→∞
P (t|t− 1), (20)

K =PCT (CPCT +R)−1. (21)

Equation(19) can be further updated as

x̂(t+ 1) = Ax̂(t) +K [y(t+ 1)− C (Ax̂(t) +Bu(t))] .
(22)

The estimation error e(t) is defined as

e(t)
Δ
= x̂(t)− x(t). (23)
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Fig. 4. Three-bus system.

C. Generalization of the Model

The state-space model described in Section III-A can be
generalized for power grid measurements. The voltage at any
given bus can be obtained in the form of a sinusoidal wave
(or phasor representation) using Kirchoff’s Voltage Law (KVL)
and/or Kirchoff’s Current Law (KCL). Let us consider a three-
bus system as shown in Fig. 4 as an example. The voltage
amplitude (|Vi|), phase (φi), active power (Pi), and reactive
power (Qi) are the variables in this system. Given a set of
known initial values, the values for the unknown variables at
each bus are obtained by solving (24) and (25) [20]. These
equations are produced by applying KCL at each node. Hence,
by solving the power-flow problem for the three-bus system, the
voltage amplitude |Vi| and phase φi at each bus are calculated.
For any bus ′i′

Pi =
n∑

k=1

|Vi‖Vk| (Gik cos(φi − φk) + sin (φi − φk)) (24)

Qi =

n∑
k=1

|Vi‖Vk| (Gik sin(φi − φk)− cos(φi − φk)) (25)

where |Pi| and |Qi| are the active and reactive power at bus i.
|Vi| and φi are the voltage magnitude and phase at bus i, and
Yik = Gik + jBik are the Y -bus elements.

As described in Section III-A, the state variables are x1 =
Av∗ cosφ and x2 = Av∗ sinφ. Assuming the system has
reached the stable state, these values of |Vi| and φi for bus i,
obtained by solving the power-flow equations, can be plugged
in to obtain the initial values for the state variables at t = 0.
Once the initial states are known, (7) and (8) for the KF of bus
i can be used to estimate values for the next time step

At bus i :

x1(0) = |Vi| cosφi (26)

x2(0) = |Vi| sinφi. (27)

Equations (24) and (25) account for the effect of all gener-
ators and loads in the system at each bus. Hence, for any bus
i, |Vi| and φi, obtained after solving this equation, reflect the
effect of all system parameters. An attack/fault on any bus or

branch in the system is reflected in the form of change in the
values of these variables. Since the KF described before uses
the values of |Vi| and φi that are obtained by solving (24) and
(25) as its initial state, any deflection in the values due to any
attack/fault will cause the values of the state variables to deviate
from the estimated values.

D. Attack Model

It is assumed that the attacker is able to control a subset of
the sensor readings in the system. Three types of attacks are
considered in this paper: 1) DoS attack; 2) random attack; and
False Data Injection attack.

1) Denial-of-Service (DoS) Attack: The denial-of-service
(DoS) attack is a form of attack where an adversary renders
some or all the components of an inaccessible control system.
The DoS attack can be launched by jamming the communica-
tion channels, flooding packets in the network, and compromis-
ing devices to prevent data transfer, etc. by the adversary [21].
The DoS attack could be on sensor data, control data, or both.
In this paper, we model the DoS attack as the lack of available
sensor data.

2) Random Attack: In this case, the attacks are not crafted to
overcome the detection mechanism implemented by the central
system. As described in (28), the attacker simply manipulates
the sensor readings

y′(t) = C(t)x′(t) + v(t) + ya(t) (28)

where ya(t) is the random attack vector generated by the
attacker. When the system is under attack, y′(t) and x′(t) denote
observations and states. These random attacks could be gener-
ated at any point in time and could be a long-term continuous
attack or a short attack.

3) False Data-Injection Attack: In case of a False Data In-
jection attack, it is assumed that the attacker knows the system
model, including parameters A, B, C, Q, R, and gain K [22].
The attacker can also control a subset of sensors (Sbad). The
attack model can then be described as

y′(t) = C(t)x′(t) + v(t) + τya(t) (29)

where τ = diag(γ1, . . . . . . γm) is the sensor selection matrix;
γi = 1 if and only if i ∈ Sbad; otherwise, γi = 0; and ya(t) is
the malicious input from the attacker.

IV. ATTACK/FAILURE DETECTOR

The KF estimator calculates the following state of the sys-
tem using the equations described in Section III-B. As the
meter readings for that state become available, the projected
estimates and the actual meter readings are compared by the
detector. If the difference between the two is above a pre-
computed threshold, an alarm is triggered to notify a possible
attack or failure. As previously discussed, the framework pro-
posed in this paper implements two types of detectors: 1) the
χ2-detector and 2) the detector implementing the Euclidean
distance metric.
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A. χ2-detector

The χ2-detector is a conventional detector used with KF. As
described in [16], the χ2-detector constructs χ2 test statistics
from the KF and compares them with the threshold obtained
from the standard χ2 table.

Now, the residue zk+1 at time k + 1 is defined as

z(t+ 1)
Δ
= y(t+ 1)− ŷ(t+ 1|t). (30)

Equivalently,

z(t+ 1)
Δ
= y(t+ 1)− C (Ax̂(t)) . (31)

Then, the χ2-detector test consists of comparing the scalar test
statistics given by

g(t) = z(t)TB(t)z(t) (32)

where B(t) is the covariance matrix of z(t). The χ2 detector
compares g(t) with a precomputed threshold obtained using
the χ2-detector-table [16] to identify a failure or attack. The
χ2 test is a long-term test because, at each detection step, all
integrated effects since system start time are considered. This
property makes it very useful for the fault detection in the
smart grid which consists of sensors that are subject to soft
failures, such as instrument bias shift. Another advantage of
the χ2 detector is its computational complexity. The parameters
required to perform the test are already generated by the KF,
making it compatible with the KF. Furthermore, the threshold
for the detector can be easily obtained from the χ2-table making
the threshold computation relatively easy. In our experiments,
the threshold is chosen such that error rate is less than 5%.

The False Data Injection attack is characterized by an at-
tack sequence ya such that lim sup ‖Δx(t)‖ = ∞, ‖Δz(t)‖ ≤
1, and t = 0, 1, . . ., where ‖Δx(t)‖ = xa(t)− x(t), ‖Δz‖ =
za(t)− z(t), and xa(t) and za(t) are state variables and residue
of the compromised systems [22]. This definition shows that the
χ2-detector may fail to detect the False Data Injection attack
on the sensors [4]. Thus, we introduce the Euclidean-based
detector in the following section.

B. Detector Implementing the Euclidean Distance Metric

Though χ2 detectors have a high noise tolerance and work
in most cases, attacks such as the False Data Injection attack
fail to get detected [4]. This phenomenon is also visualized
in the simulation results in Section V. The False Data Injec-
tion attack is a class of attack which is carefully crafted to
bypass the statistical detector, such as χ2-detectors. Thus to
detect these types of attacks, we propose an Euclidean-based
detector, which calculates the deviation of the observed data
from the estimated data. To apply the Euclidean detector, we
first reconstruct the sinusoidal signals from the state estimates
and then compare them with the measurements obtained from
the sensors as shown

d(p, q) =
√
(p1 − q1)2 + (p2 − q2)2 + . . . . . .+ (pn − qn)2

(33)

TABLE I
EXPERIMENTAL SETUP

where p is the amplitude of the voltage signal and q is the
amplitude of the estimated voltage signal.

If the difference between the two is greater than the thresh-
old, as in the case of the χ2 detector, an alarm is triggered.
The aforementioned KF estimator (and detectors) cannot dif-
ferentiate the state variable changes due to an attack/fault from
the noise such as system disturbance. To minimize the false
positives caused due to the noise, we set the threshold to 3σ
(σ is the standard deviation of the noise from Section III-B). As
stated earlier, given the Gaussian noise with zero mean, setting
the threshold to 3σ can filter out 99.73% false positives due to
the noise [23].

Under steady state, the input signal can be reconstructed
by applying the values of state variables in (5). Similarly,
the estimated signal can be reconstructed using (5) and x̂(t)
from (17).

Hence, the following corollary can be obtained from the
definition of the False Data Injection attack in Section IV-A.

Corollary 1: Given lim sup ‖Δx(t)‖ = ∞

lim
t→∞

d (Va(t), V (t)) = ∞

where d(V (t), Va(t)) =
√
(C(t)x̂a(t)− C(t)x′(t))2.

As ‖Δx(t)‖ tends to ∞, d(V (t), Va(t)) approaches ∞ as
well. Therefore, we can detect attacks and faults that result from
the manipulation of the measured signal, such as the False Data
Injection attack.

V. IMPLEMENTATION AND PERFORMANCE EVALUATION

We implemented the KF estimator,χ2-detector and Euclidean
detector using Matlab. The experimental setup and the initial
values are shown in Table I. A 60-Hz sinusoidal voltage signal
with random Gaussian noise is generated and fed to the KF
estimator as the input. Matlab function randn() is used to
produce normally distributed noise with mean value zero. The
input signal and the resulting sinusoidal signal obtained using
the state estimates are plotted in Figs. 5–9 and 11. Each of
these figures contains two graphs and shows the results of the
simulation plotted against time. The top subgraph shows how
the amplitude varies with time for the input sinusoidal signal
and the signal constructed using estimated state variables. In the
bottom subgraph, the value for g(t) from (32) is plotted against
time. The straight horizontal line is the threshold obtained from
the χ2 table. For the Euclidean detectors, d(p, q) from (33) is
plotted against time.

A. Attack/Fault Detection Using the χ2 Detector

Fig. 5 shows the simulation results using the χ2-detector in
the absence of attacks/faults for a certain period of time. It can
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Fig. 5. χ2-detector when there is no attack/fault.

Fig. 6. Continuous random attack detected using χ2-detector.

be seen that the estimated values obtained from the KF estima-
tor overlap with the input signal denoting there is no difference
between the estimated and the observed value. Hence, for g(t),
obtained from the detector, stays within the threshold. Since
our simulations also consider the random noise in the system,
there is a slight difference between the estimates and the input
signal in the beginning. However, the KF works iteratively by
correcting its estimates using the state-space model and the
measurements obtained, and the estimates gradually converge
with the input signal.

In case of attacks, the estimated values do not match with
the observed values and g(t) exceeds the threshold as shown
in Fig. 6. As a result, the detector triggers an alarm signifying
an attack/fault in the system. Similarly, Fig. 7. shows a short-
timed attack being detected by the framework. Fig. 8. shows the
detection of the DoS attack.

B. False Data Injection Attack

The False Data Injection attack injects fake sensor mea-
surements that can fool the system by implementing the KF

Fig. 7. Random attack for a short period of time detected using the χ2-
detector.

Fig. 8. DoS attack detected using the χ2-detector.

estimator with the χ2-detector as described in [22]. The attack
sequence can be obtained from

ya(n+ t) = ya(t)−
λ(i+1)

M
y∗ (34)

where n is the dimension of state space, y∗ = Cv, v =
eigenvector of A, |λ| >= 1, M = maxk=0..n−1‖Δz(k)‖, and
Δz(k) = z′(k)− z(k). z′(k) is the residue when the system is
under attack.

The derivation of the attack sequence [22] ensures that
it bypasses the detector and increases the error in the state
estimation. The second subgraph in Fig. 9 shows the behavior
of the χ2-detector under the False Data Injection attack. We
can see the estimates do not agree with the measured values
in the top subgraph in Fig. 9. However, g(t) never exceeds the
threshold. In other words, the graph shows that the statistical
tests in the χ2-detector fail to detect the False Data Injection
attack. We address this drawback in the next section by using
the Euclidean detector, which can identify such an attack by
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Fig. 9. False Data Injection attack using the χ2-detector.

Fig. 10. Euclidean detector when there is no attack/fault.

constantly monitoring the difference between the estimated
values and the measured values.

C. False Data Injection Attack Detection Using the
Euclidean Detector

The Euclidean detector compares the difference between the
measured data and the estimated data based on the Euclidean
distance metric as shown in (33). Since the state variables
only consider the time-invariant components of a sinusoid,
the state variables remain relatively constant as described in
Section III-A. Thus, a change in state variables could mean
either an attack or a fault in the system. However, to avoid
false alarms due to measurement or system errors, we set the
threshold to 3σ as discussed in Section IV-B. Fig. 10 shows the
plot of the Euclidean Distance metric when there is no attack in
the system and the bottom subgraph in Fig. 10. shows the plot
when there is a False Data Injection attack in the system. When
there is an attack in the system, the difference between the two

Fig. 11. Change in voltage due to load change.

curves exceeds the threshold, hence, the False Data Injection
attack can be detected by the Euclidean distance metric.

D. Load Change

In the model derived in this paper, it is assumed that the
load in the system remains constant. In case there is a change
in load, there will be a change in the voltage signal across
the buses. If the load profile is known, then the change in
voltage amplitude/phase caused due to the load change can be
predicted. Assume there is a change in the voltage due to load
change as shown in Fig. 11. The parameters in the KF can be
adjusted to reflect the change in the voltage due to the load
change. This allows us to obtain estimates for the state variables
after the load change. Fig. 11. shows that the estimates closely
follow the signal with the load change. At time step 0.07, the
random attack is detected by the χ2 detector and Euclidean
detector in this scenario.

E. χ2-Detector versus Euclidean Detector

The probability of attack detection in both detectors is largely
dependent on the value of the threshold. In the case of the χ2-
detector, the threshold is obtained from the standard χ2 table.
Similarly, in the case of the Euclidean detector, the threshold is
obtained from the standard deviation of Gaussian distribution.
In this experiment, we set the value of the thresholds in both
detectors to filter 99% of noise. Thus, the probability of false
alarms due to noise is less than 1%.

In general, the Euclidean detector is more sensitive towards
changes than the χ2-detector. As can be seen in Fig. 12,
the Euclidean detector is faster in responding to the changes.
Hence, if noise parameters for the system are known, the
Euclidean detector gives better results. If the noise parameters
are not known in advance, the χ2-detector is preferable since
it handles the soft errors better. However, a disadvantage of the
χ2-detector relative to the Euclidean detector is its inability to
detect a False Data Injection attack. Fig. 9 shows the reaction
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Fig. 12. Performance of both detectors under the random attack.

Fig. 13. IEEE 9-bus system under the False Data Injection attack.

of the χ2 detector and Euclidean detector when the system is
under the False Data Injection attack.

The Euclidean detector reconstructs the signal from the state
estimates and compares it with the measured signal whereas the
χ2-detector only computes the residue vector. Since reconstruc-
tion requires more computation, the Euclidean detector is more
resource intensive than the χ2-detector.

F. Implementation of the Proposed Framework in the
IEEE 9-Bus System

Fig. 13. shows an IEEE 9-bus system with sensors to monitor
the state parameters and the estimator/detector for bus 3. The
9-bus system is simulated using the MATPOWER [24] package
in MATLAB. The voltages and phases, obtained by solving the
IEEE 9-bus power system in MATPOWER, are used as the
state parameters in the KF estimator. A similar structure can
be assumed for each bus in the system. For the simplicity, only
bus 3 is discussed here. The attack sequence ya is generated
by the adversary as discussed in [22]. The sensors in the bus
report their readings to the corresponding KF estimators and

Fig. 14. False data attack detection for bus 3 in the IEEE 9-bus system.

Euclidean detectors. The successful detection of the False Data
Injection attack on bus 3 is shown in Fig. 14.

VI. CONCLUSION

In this paper, a framework for the smart-grid system using
the KF estimator together with the χ2-detector and Euclidean
detector has been designed. It has been shown that the χ2-
detector is efficient in detecting different types of faults and
attacks, such as DoS attacks and random attacks on the system.
Further, to handle attacks on the system, such as False Data
Injection, which evades the χ2-detector, we have proposed the
Euclidean detector which uses the Euclidean distance metric
for detection. We have also shown that the false positives due
to noise for the Euclidean detector can be reduced to less than
1% with the proper selection of the threshold. Our extensive
simulation and analysis have demonstrated the effectiveness of
the proposed Euclidean detector in detecting various types of
attacks, including the False Data Injection attack.
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