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Abstract—To address the increasing demand for wireless
bandwidth, cognitive radio networks (CRNs) have been pro-
posed to increase the efficiency of channel utilization; they
enable the sharing of channels among secondary (unlicensed)
and primary (licensed) users on a non-interference basis. A
secondary user in a CRN should constantly monitor for the
presence of a primary user’s signal to avoid interfering with
the primary user. However, to gain unfair share of radio
channels, an attacker (e.g., a selfish secondary user) may
mimic a primary user’s signal to evict other secondary users.
Therefore, a secure primary user detection method that can
distinguish a primary user’s signal from an attacker’s signal
is needed. A unique challenge in addressing this problem is
that Federal Communications Commission (FCC) prohibits
any modification to primary users. Consequently, existing
cryptographic techniques cannot be used directly.

In this paper, we develop a novel approach for authenticating
primary users’ signals in CRNs, which conforms to FCC’s
requirement. Our approach integrates cryptographic signa-
tures and wireless link signatures (derived from physical radio
channel characteristics) to enable primary user detectionin
the presence of attackers. Essential to our approach is ahelper
node placed physically close to a primary user. The helper
node serves as a “bridge” to enable a secondary user to verify
cryptographic signatures carried by the helper node’s signals
and then obtain the helper node’s authentic link signatures
to verify the primary user’s signals. A key contribution in
our paper is a novel physical layer authentication technique
that enables the helper node to authenticate signals from its
associated primary user. Unlike previous techniques for link
signatures, our approach explores the geographical proximity
of the helper node to the primary user, and thus does not
require any training process.

Keywords-cognitive radio networks; primary user detection;
link signatures.

I. I NTRODUCTION

The proliferation of emerging wireless applications re-
quires a better utilization of radio channels [4]. To address
the increasing demand for wireless bandwidth, cognitive
radio networks (CRNs) have been proposed to increase the
efficiency of channel utilization under the current static
channel allocation policy [17]. They enable unlicensed users
to use licensed channels on a non-interference basis, thus

serve as a solution to the current low usage of radio chan-
nels [8]. For example, IEEE 802.22 Standard on Wireless
Regional Area Networks (WRANs) employs cognitive radio
to allow the sharing of geographically unused channels
allocated to television broadcast services, and thereforebring
broadband access to hard-to-reach low-population-density
areas (e.g., rural environments) [9].

In CRNs, there are two types of users:primary users
and secondary users[17]. Primary users are licensed users
who are assigned with certain channels, and secondary users
are unlicensed users who are allowed to use the channels
assigned to a primary user only when they do not cause
any harmful interference to the primary user [17]. For
example, in IEEE 802.22 WRANs, TV transmission towers
are primary users, and radio devices that use TV channels
for communication are secondary users.

An essential issue in CRNs isprimary user detection,
in which a secondary user monitors for the presence of a
primary user’s signal on target channels [4]. If a primary
user’s signal is detected, the secondary user should not use
those channels to avoid interfering with the transmission of
the primary user.

Existing methods for primary user detection can be cat-
egorized asenergy detectionand feature detection[17]. In
energy detection methods (e.g., [30]), any captured signal
whose energy exceeds a threshold is identified as a primary
user’s signal. In feature detection methods (e.g., [12], [25],
[26], [29], [37]), secondary users attempt to find a specific
feature of a captured signal, such as a pilot, a synchroniza-
tion word, and cyclostationarity. If a feature is detected,then
the captured signal is identified as a primary user’s signal.

Due to the open nature of wireless communications and
the increasingly available software defined radio platforms
(e.g., Universal Software Radio Peripherals (USRPs) [10]),
it is necessary to consider potential threats to normal op-
erations of CRNs. Indeed, CRNs do face several threats.
In particular, an attacker may transmit with high power or
mimic specific features of a primary user’s signal (e.g., use
the same pilots or synchronization words) to bypass the
existing primary user detection methods [4]. Consequently,



secondary users may incorrectly identify the attacker’s signal
as a primary user’s signal and do not use relevant channels.
Such attacks are calledprimary user emulation (PUE)
attacks[4].

It is necessary to have a secure primary user detection
method that can identify a primary user’s signal in the pres-
ence of attackers. At first glance, a cryptographic signature
seems to be a good candidate for this task. Unfortunately,
CRNs face a unique constraint that prevents it from being
employed. Specifically, Federal Communications Commis-
sion (FCC) states that “no modification to the incumbent
system (i.e., primary user) should be required to accom-
modate opportunistic use of the spectrum by secondary
users” [6]. As a result, any solution that requires changes
to primary users, such as enhancing primary users’ signals
with cryptographic signatures, is not desirable.

There has been a recent attempt that uses a location
distinction approach to distinguish between a primary user’s
signal and an attacker’s signal [4]. Specifically, this ap-
proach uses received signal strength (RSS) measurements
to estimate the location of the source of a signal, and
then determines if the signal is from the (static) primary
user based on the known location of the primary user [4].
However, as indicated in [23], RSS based location distinction
can be easily disrupted if an attacker uses array antennas to
send different signal strengths in different directions simul-
taneously. Moreover, it requires multi-node collaboration,
which is expensive in terms of bandwidth and energy.

Link signatures (i.e., radio channel characteristics suchas
channel impulse responses) have been developed recently
to obtain more secure and robust location distinction [23],
[38]. Unfortunately, it remains non-trivial to exploit link
signature based location distinction approach for primary
user detection in the presence of attackers. In particular,
a receiver needs to know a transmitter’s historical link
signatures in order to verify if a newly received signal is
from the transmitter. In CRNs, however, it is impossible for
a secondary user to know a primary user’s historical link
signatures, unless the secondary user can first authenticate
whether a signal is from the primary user or not.

In this paper, we develop a novel approach that integrates
traditional cryptographic signatures and link signaturesto
enable primary user detection in the presence of attackers.
Our approach does not require any change to primary users,
and thus follows the FCC constraint properly.

A key component of our approach is ahelper nodeplaced
close (and physically bound) to a primary user. Though we
cannot modify any primary user due to the FCC constraint,
we can put necessary mechanisms on each helper node,
including the use of cryptographic signatures. Moreover,
since the helper node is placed very close to the primary
user, their link signatures observed by a secondary user are
very similar to each other. The helper node thus serves
as a “bridge” that enables a secondary user to first verify

the cryptographic signatures included in the helper node’s
signals, then learn the helper node’s authentic link signa-
tures, and finally verify the primary user’s link signatures. In
other words, our approach properly integrates cryptographic
signatures and wireless link signatures to enable primary
user detection in CRNs in the presence of attackers.

The contributions of this paper are summarized below:
• We develop a new primary user detection method that

integrates cryptographic signatures with wireless link
signatures to distinguish a primary user’s signal from
an attacker’s signal. Our method conforms to the FCC’s
requirement of not modifying primary users. Unlike the
previous approach [4], our method does not require the
deployment of a monitoring network, and thus avoids
the weakness of the previous approach.

• We develop a novel physical-layer authentication tech-
nique that enables a helper node to authenticate sig-
nals from its associated primary user. Unlike previous
proposals for link signatures, our approach explores
the geographical proximity of the helper node to the
primary user rather than historical link signatures. A
key consequence is that our method does not require
any training process.

• We evaluate the effectiveness of our method through
both theoretical analysis and experiments using real-
world link signatures obtained from the CRAWDAD
data set [22]. Moreover, we demonstrate the feasibility
of our proposed method by a prototype implementation
on a software-defined radio platform [10].

The rest of the paper is organized as follows. Section II
gives background information about link signatures. Sec-
tion III explains our assumptions and threat model. Sec-
tion IV gives an overview of our method. Sections VI and V
present the primary user detection at a helper node and
a secondary user, respectively. Section VII discusses the
experimental evaluation. Section VIII describes a prototype
implementation of our method. Section IX discusses related
work, and Section X concludes this paper.

II. PRELIMINARIES

In this section, we provide some preliminary information
on link signatures, which will be used for primary user
detection.

Radio signal generally propagates in the air over multiple
paths due to reflection, diffraction, and scattering [23].
Therefore, a receiver usually receives multiple copies of the
transmitted signal (See Figure 1). Since different paths have
different distances and path losses, signal copies travel on
multiple paths typically arrive at the receiver at different
times and with different attenuations [23]. The sum of those
signal copies forms the received signal. For the sake of
presentation, we refer to a signal copy that travels along one
path as amultipath component. For example, in Figure 1,
signalss1, s2, s3, ands4 are multipath components.



Multipath effect might be reduced by using directional an-
tennas. However, directional antennas usually cannot provide
perfect laser-like radio signals. For example, the beamwidth
of a 3-element Yagi Antenna, the most common type of
directional antennas, is 90 degrees in the vertical plane
and 54 degrees in the horizontal plane [18]. Thus, it is in
general hard to completely eliminate multipath effect. For
long distance transmission, the amount of multipath effect
seen by a receiver may be much more due to the reduced
focusing power at the receiver [2].
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Figure 1. Example of a multipath effect. The wireless signalsent by
transmitter Tx is reflected by the ionosphere, a building, and the ground.
Thus, radio waves propagate over paths 1, 2, 3, and 4. The receiver Rx
receives signal copiess1, s2, s3, ands4 from paths 1, 2, 3, and 4, and the
received signal is the sum of all signal copies.

Note that a multipath component herein refers to a resolv-
able multipath component (i.e., the arrival of a multipath
component does not interfere with that of its subsequent
multipath component). Figure 2 is an example that shows the
difference between resolvable and non-resolvable multipath
components.
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Figure 2. Resolvable and non-resolvable multipath components. In (a),
the arrivals of two multipath components do not interfere with each other.
Therefore, they are resolvable. In (b), the arrival of the second multipath
component interferes with that of the first multipath component. Therefore,
they are non-resolvable.

A radio channel consists of multiple paths from a trans-
mitter to a receiver, and each path of the channel has a
response (e.g., distortion and attenuation) to the multipath
component traveling on it [23]. For convenience, we call
the response to each multipath component acomponent re-
sponse. Essentially, thechannel impulse responseis formed
by the superposition of many component responses, each

representing a single path [23]. Therefore, the channel
impulse response, denoted byh(τ), is given by

h(τ) =

L
∑

l=1

ale
jφlδ(τ − τl), (1)

whereL is the total number of multipaths,δ(τ) is the Dirac
delta function, andal, φl, andτl are the channel gain, the
phase, and the time delay of thel-th multipath component,
respectively [23].

If a transmitter moves from one place to another, the
multiple paths from the transmitter to the receiver change,
and thus the channel impulse response also changes. As
a result, the channel impulse responses can be used to
determine whether the transmitter changes its location or
not. A channel impulse response is referred to as alink
signature[23]. A location distinction algorithm using link
signatures has been proposed in [23]. Specifically, a history
of n link signatures are measured and stored while the
transmitter is not moving. For a newly measured link signa-
ture, the receiver computes the distance between the newly
measured link signature and the historical link signatures. If
the distance is larger than a threshold, then a location change
is detected.

III. A SSUMPTIONS ANDTHREAT MODEL

Our system consists of primary users and secondary users.
A primary user is assumed to be at a fixed location (e.g.,
a TV broadcast tower) [4]. As stated by FCC, TV stations
and radio infrastructures should maintain physical security
through a combination of security personnel, card restricted
access, video surveillance, and other methods [27]. Thus,
we assume that primary users are physically protected and
any unauthorized entity cannot be physically close to a
primary user due to those physical protection methods. We
assume that secondary users are equipped with wireless radio
devices and are allowed to transmit signals on the channels
allocated to primary users only when the primary users are
not transmitting.

We assume that an attacker’s objective is to prevent other
secondary users from using the primary users’ channel and
get an unfair share of the bandwidth when the primary users
are not transmitting. Jamming attacks, which affect other
users as well as the attackers themselves, are thus not in the
scope of this paper.

We assume that attackers can mimic a primary user’s
signal and inject their fake signals into the primary user’s
channel. We assume that an attacker has the following
capabilities: (1) He knows the signal feature of a primary
user and is able to generate a fake signal with the same
feature. (2) He can transmit signals on the a primary user’s
channel to mislead the primary user detection process at
secondary users. (3) He has a large maximum transmit power
that can be several times of that of a primary user. However,



we assume that an attacker cannot be physically close to a
primary user due to the physical protection.

We assume all secondary users have reliable ways to
obtain the public key of each helper node, and an attacker
cannot compromise the helper node.

IV. OVERVIEW

Our goal is to provide secondary users with the ability
to determine whether a received signal is from a primary
user or not in the presence of attackers. One possibility is
to use the link signature of the received signal. However,
as discussed in the Introduction, it is non-trivial for any
secondary user to obtain the historical link signatures of a
primary user in an authenticated way, given FCC’s restriction
on (no modification of) primary users.

In this paper, we develop a novel approach that integrates
traditional cryptographic signatures and link signaturesto
enable primary user detection in the presence of attackers.
Specifically, we propose to place ahelper nodeclose (and
physically bound) to each primary user. Given the FCC
requirement on the physical security of primary users such
as TV stations, such helper nodes can also be physically
protected. Though we cannot modify any primary user due
to the FCC constraint, we do have the flexibility to put
necessary mechanisms on each helper node, including the
use of cryptographic signatures. Moreover, since each helper
node is placed physically close to the primary user, their link
signatures observed by a secondary user are very similar to
each other.

To enable secondary users to authenticate signals from a
primary user, we propose to use the helper node associated
with the primary user as a “bridge”. Specifically, we propose
to have the helper node transmit messages when the target
channel is vacant. These messages include cryptographic
signatures, which will allow secondary users to verify their
authenticity. As a result, secondary users can authenticate
messages from the help node, then obtain the helper node’s
authentic link signatures, and finally verify the primary
user’s link signatures using those learned from the helper
node. Note that our approach does not require any change to
primary users, and thus follows the FCC constraint properly.

Issues of spacing multiple independent radio wave trans-
mitters very close to each other (e.g., on the same mast)
have been explored and demonstrated feasible [3], [19].
These techniques can be readily adopted to facilitate the
deployment of helper nodes close to primary users in CRNs.

For the sake of presentation, in this paper, we focus our
discussion on one primary user and its associated helper
node. However, all discussion in this paper applies to the
situations where there are multiple primary users and helper
nodes, as long as the association of each primary user and
its helper node is clear.

A. Technical Challenges

Two technical problems need to be resolved to make the
proposed approach work. First, the helper node has to have
a reliable way to detect primary user’s signals. In particular,
the attacker may target at the helper node. Note that the
proposed approach requires that the helper node transmit
messages to secondary users so that the secondary users can
obtain valid training link signatures. However, the attacker
may pretend to be the primary user and inject fake signals
into the target channel. This can effectively stop the helper
node, and the proposed approach will fail. Thus, it is critical
for the helper node to distinguish signals from the primary
users and those from the attacker.

At first glance, this seems to be the same problem as
what we are trying to solve, and thus put us in a “chicken-
first or egg-first” situation. However, we will show that this
is not the case due to the proximity of the helper node
to the primary user. We will develop a novel physical-
layer authentication technique to enable the helper node to
properly authenticate messages from the primary userswith-
out using any training link signatures. This is dramatically
different from traditional link signatures, where training is a
necessary part of the scheme. The details will be discussed
in Section V.

Second, the interaction between the helper node and
secondary users must be properly protected with lightweight
mechanisms. In particular, the integration of cryptographic
signatures and link signatures is a critical component of the
proposed approach, and must be done efficiently. Moreover,
there has to be a mechanism to prevent the attacker from
replaying messages originally sent by the helper node. Oth-
erwise, the attacker may simply reuse the valid cryptographic
signatures to mislead secondary users into accepting invalid
training link signatures. We will discuss critical design issues
for the protocol between the helper node and a secondary
user in Section VI.

V. AUTHENTICATING PRIMARY USER’ S SIGNAL AT THE

HELPERNODE

As discussed earlier, the helper node transmits signals
using the channels allocated to its primary user such that
secondary users can “learn” the link signatures of the
primary user. To avoid interfering with the transmission of
the primary user, the helper node transmits signals to sec-
ondary users only when the primary user is not transmitting.
Therefore, the helper node should first sense the channel to
decide whether the primary user is transmitting.

Unfortunately, the helper node cannot simply employ
traditional primary detection approaches to determine the
presence of the primary user’s signal, since the attacker may
mimic the primary user’s signal and inject fake signals into
the target channels.

In this section, we propose a novel physical-layer authenti-
cation approach that enables the helper node to authenticate



the primary user’s signalwithout using any training link
signatures. Intuitively, the multipath effect exhibited by the
primary user’s signal and observed by the helper node has
some unique properties, since the primary user is very close
to the helper node. In our approach, we utilize such unique
multipath effect to enable the helper node to distinguish the
primary user’s signal from those transmitted by attackers.

In the following, we first give our observation behind our
new technique, then describe the proposed authentication
approach, and analyze the effectiveness of the proposed
approach.

A. Observation

Ideally, signal strength decreases as the signal propagates
farther away from the transmitter. A short propagation path
results in a large received signal amplitude, whereas a long
propagation path leads to a small received signal amplitude.

Assume that there is no obstacle between the primary
user and the helper node. The primary user is close to
the helper node. This means the first received multipath
component travels on a very short path, which is a straight
line between the primary user and the helper node. Unlike
the first received multipath component, the second received
multipath component travels along a longer path. According
to [13], the length of the path over which the second
received (resolvable) multipath component travels shouldbe
larger than c

R
, wherec is the speed of light andR is the

transmission rate.
If the distance between the primary user and the helper

node is much smaller thanc
R

, then the amplitude of the first
received multipath component is much larger than that of the
second received multipath component. In other words, the
amplitude ratio of the first received multipath component to
that of the second received multipath component is a large
number, as illustrated in Figure 3.

T

B

R

1
2

Figure 3. Amplitude ratio.T , R, andB is the primary user, the helper
node, and an obstacle, respectively. The signal transmitted by T travels
along two paths: path 1 (T → R) and path 2 (T → B → R). Let P1

andP2 denote the amplitudes of the signal received from path 1 and path
2, respectively. The length of path 1 is much smaller than that of path 2,
resulting in a large amplitude ratioP1

P2

.

B. Authentication Method

Based on the above observation, we propose to use the
amplitude ratior = P1

P2

to authenticate the signal from the
primary user, whereP1 andP2 are the amplitude of the first

and the second received multipath components, respectively.
For each newly received signal, the helper node computes
the amplitude ratior, and then comparesr with a threshold
w. If r > w, then the received signal is marked as the
primary user’s signal. Otherwise, the received signal is a
suspicious signal that may have been sent by an attacker,
and are discarded.

For the sake of presentation, we usera and rp denote
the amplitude ratio of the attacker’ signal and that of the
primary user’s signal, respectively. We would like to point
out that the values ofra and rp depend on the positions
of obstacles. Due to the randomness and uncertainty of the
surroundings,ra (rp) may not always be smaller (larger)
than the pre-determined thresholdw. Hence, we may have
two types of possible errors:false alarmandfalse negative.
With a false alarm,rp < w, and thus the primary user’s
signal is incorrectly identified as the attacker’s signal. With
a false negative,ra > w, and thus the attacker’s signal is
incorrectly identified as the primary user’s signal.

In Sections V-C and VII, through both theoretical analysis
and experiment evaluation, we will show that the probability
of false alarm and the probability of false negative decrease
quickly as the distance between the attacker and the helper
node increases.

1) Computing the Amplitude Ratio:A helper node can
first measure the channel impulse response of a received
signal, and then calculate the amplitude ratio based on the
measured channel impulse response. In Lemma 1, we show
that the amplitude ratio of the first multipath component to
the second multipath component indeed equals the amplitude
ratio of h1 to h2, where h1 and h2 are the component
responses for the first and the second multipath components,
respectively.

Lemma 1:Let s1 ands2 denote the first and the second
received multipath components. The amplitude ratior of s1

to s2 equals to that ofh1 to h2, whereh1 and h2 are the
component responses fors1 ands2.

Proof: Recall that the channel impulse responseh(τ)
is h(τ) =

∑L
l=1 ale

jφlδ(τ − τl). Assume the first and the
second multipath component arrives at timeτ1 andτ2. Thus,
the component responsesh1 and h2 for the first and the
second multipath components are:h1 = h(τ1) = a1e

jφ1δ(0)
and h2 = h(τ2) = a2e

jφ2δ(0). According to [14], the
amplitude ratio ofh1 andh2 can be transformed as follows:

‖h1‖
‖h2‖

=
‖a1e

jφ1δ(0)‖
‖a2ejφ2δ(0)‖ =

‖a1(cosφ1 + i sinφ1)‖
‖a2(cosφ2 + i sinφ2)‖

=
‖a1‖
‖a2‖

The channel gainal of the l-th multipath component isal =
sl

st
, wheresl andst is thel-th received multipath component

and the transmitted signal [14]. Therefore,

‖h1‖
‖h2‖

=
‖a1‖
‖a2‖

=
‖s1‖
‖s2‖

= r.



Figure 4 shows a channel impulse responses obtained
from the CRAWDAD data set [32], which contains over
9,300 channel impulse responses measured in an indoor en-
vironment with obstacles (e.g., cubicle offices and furniture)
and scatters (e.g., windows and doors). The second multipath
component arrives at the receiver about 100 microseconds
after the arrival of the first one. Each multipath component
leads to a triangle in shape with a peak (i.e., the component
response) [23], and the helper node can use the first and the
second peaks as‖h1‖ and‖h2‖ to compute the ratior.
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Figure 4. Computing the ratior. This graph plots the amplitudes of
a real measured channel impulse response (i.e., link signature) obtained
from CRAWDAD for a 2.4 GHz channel, and‖h1‖ and‖h2‖ corresponds
the first and the second rounded peak. Therefore,‖h1‖ ≈ 0.82 × 10−3,
‖h2‖ ≈ 0.55 × 10

−3, andr =
‖h1‖
‖h2‖

≈ 1.49.

2) Real-world Examples:Figures 5 and 6 show two real-
world examples of channel impulse responses obtained from
the CRAWDAD data set [32]. In Figure 5, the receiver
is positioned 13.77 meters away from the transmitter. We
can see that the corresponding amplitude ratio of the first
multipath component to that of the second one is about
4
2 = 2. In Figure 6, the receiver is moved to a closer
location that is 1.45 meters away from the transmitter. Now
the amplitude ratio becomes70.5 = 14.
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Figure 5. Example of amplitude ratio: The distance between the transmitter
and the receiver is 13.77 meters, and the corresponding amplitude ratio is
about about4

2
= 2.
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Figure 6. Example of amplitude ratio: The distance between the transmitter
and the receiver is 1.45 meters, and the corresponding amplitude ratio is
about 7

0.5
= 14.

C. Theoretical Analysis

In this section, we first give the mathematical model of the
received signal amplitude, and then show the performance
of the proposed authentication approach in terms of the
probability of false negative (i.e., the attacker’s signalis
incorrectly identified as the primary user’s signal) and the
probability of false alarm (i.e., the primary user’s signalis
incorrectly identified as the attacker’s signal).

1) Signal Amplitude Model:According to the simplified
path loss model [14], the amplitudePr of a received signal
can be modeled as

Pr =

{ √

Ptk(d0

d
)γ d > d0,√

Ptk d ≤ d0,
(2)

wherePt is the transmit power,d is the length of the path
along which the signal propagates from the transmitter to the
receiver (d > d0), k is a scaling factor whose value depends
on the antenna characteristics and the average channel atten-
uation,d0 is a reference distance for the antenna far-field,
andγ is the path loss exponent. The values ofk, d0, andγ

can be obtained either analytically or empirically [14].
2) Mathematical Analysis:We derive the probability of

false negative and the probability of false alarm in Lemmas 2
and 3, respectively.

Lemma 2: (Probability of false negative) Given a detec-
tion thresholdw, the probabilitypd that the attacker’s signal
is wrongly identified as the primary user’s signal is

pd =
1

2
(1− erf(

10 log (w
2

γ −1)
√

d

T1c

σ
√

2
)), (3)

whereerf is the Error Function,d is the distance between
the attacker and the helper node,c is the propagation speed
of electromagnetic wave, andσ andT1 are parameters that
typically range between2− 6dB and0.1− 1 microsecond,
respectively.

Proof: Let da1 and da2 be the lengths of the path
along which the first and the second received multipath



components of the attacker travels, respectively. LetPra1

and Pra2 be the amplitudes of the first and the second
multipath components, respectively. Assumeda1 > d0 and
da2 > d0. Thus, according to Equation 2,Pra1 and Pra1

can be approximated by

Pra1 =

√

Ptak(
d0

da1
)γ ,

Pra2 =

√

Ptak(
d0

da2
)γ ,

wherePta is the transmit power of the attacker. Hence, the
ratio ra of Pra1 to Pra2 can be written as

ra =

√

Ptak( d0

da1

)γ

√

Ptak( d0

da2

)γ

=

√

(
da2

da1
)γ .

The attacker’s signal is wrongly identified as the primary
user’s signal ifra ≥ w. Thus,pd = 1− P(ra < w). Let ta
denote the time at which the attacker’s signal starts to prop-
agate to the helper node. Letta1 and ta2 denote the arrival
times of the first and the second multipath components of
the attacker, respectively. Therefore,da1 = (ta1 − ta)c and
da2 = (ta2 − ta)c, and we can have the following:

da2 = (ta2 − ta)c

= (ta1 − ta)c + (ta2 − ta1)c = da1 + ∆c,

where∆ = ta2−ta1. According to [15], for urban, suburban,
and rural areas,∆ can be statistically modeled as

∆ = T1

√
dy,

where T1 is the median value of∆ when d = 1000m
(T1 typically ranges from0.1− 1 microsecond), andy is a
lognormal variate. Specifically,Y = 10 log y is a Gaussian
random with zero mean and a standard deviation that lies
between2 − 6dB. The model parameters and their values
can be found in Table III of [15]. Assume the first received
multipath component travels along the straight line between
the attacker and the helper node. Thus,da1 = d and

da2 = (d + ∆c) = d + T1

√
dyc

Therefore,

ra =

√

(
da2

da1
)γ =

√

(
d + T1

√
dyc

d
)γ

Recall thatY = 10 log y is a Gaussian random with zero
mean. Letσ denote the deviation forY . Thus,

pd = P(ra ≥ w) = 1− P(ra < w)

= 1− P(

√

(
d + T1

√
dyc

d
)γ < w)

= 1− P(Y < 10 log
(w

2

γ − 1)
√

d

T1c
)

=
1

2
(1− erf(

10 log (w
2

γ −1)
√

d

T1c

σ
√

2
))

Lemma 3: (Probability of false alarm) Given a detection
thresholdw, the probabilitypf that the primary user’s signal
is wrongly identified as the attacker’s signal is

pf =
1

2
(1 + erf(

10 log
(w

2

γ −1)
√

dp1

T1c

σ
√

2
)). (4)

Proof: Let dp1 and dp2 be the path lengths corre-
sponding to the first multipath component and the second
multipath component of the primary user, respectively. Note
that the helper node and the primary user are very close
to each other. Thus, we assume thatdp1 ≤ d0. Similar to
da1, we assume thatdp2 > d0. Let Prp1 and Prp2 be the
amplitudes of the first and the second multipath components
of the primary user, respectively. According to Equation 2,
Prp1 andPrp2 can be modeled by

Prp1 =
√

Ptpk,

Prp2 =

√

Ptpk(
d0

dp2
)γ ,

wherePtp is the transmit power of the primary user. Hence,
the ratiorp of Prp1 to Prp2 can be written as

rp =

√

Ptpk
√

Ptpk( d0

dp2

)γ
=

√

(
dp2

d0
)γ .

The primary user’s signal is wrongly identified as an at-
tacker’s signal ifrp < w. Thus, the probabilitypf that the
primary user’s signal is rejected isP(rp < w). Let tp denote

the time at which the primary user’s signal starts to prop-
agate to the helper node. Lettp1 and tp2 denote the arrival
times of the first and the second multipath components of
the primary user, respectively. Therefore,

dp2 = (tp2 − tp)c = dp1 + T1

√

dp1yc.

Without loss of generality, we assumedp1 = d0 to simplify
the calculation, and thus obtain

rp =

√

(
dp2

d0
)γ =

√

(1 +
T1yc
√

dp1

)γ .



Thus, we can obtain the probabilitypf that the primary
user’s signal is wrongly identified as the attacker’s signal,
and

pf = P(rp < w) = P(

√

(1 +
T1yc
√

dp1

)γ < w)

=
1

2
(1 + erf(

10 log
(w

2

γ −1)
√

dp1

T1c

σ
√

2
)).

3) Determining the Thresholdw: The thresholdw can
be determined based on the requirement for the probability
of false negativepd or the probability of false alarmpf . For
practical applications, the IEEE 802.22 standard suggests
both probabilities of false negative and false alarm be less
than 0.1 in terms of detecting primary users [7]. Herein, we
assume a stricter requirement thatpd ≤ 0.05, and thus

pd =
1

2
(1− erf(

10 log (w
2

γ −1)
√

d

T1c

σ
√

2
)) ≤ 0.05

By treatingw as an unknown and solve the inequality, we
can get that

w ≥

√

(1 +
T1c× 100.11×

√
2σ

√
d

)γ . (5)

Although the helper node does not know the actual distance
d between itself and the attacker, the helper node can
estimate the minimum distancedmin from the attacker to
him/her based on the physical protection policy and the
approaches he/she uses. Let

wmin =

√

(1 +
T1c× 100.11×

√
2σ

√
dmin

)γ .

wmin can be used as the thresholdw, since Equation (5)
holds whenw = wmin. Note that the primary user and the
helper node are very close to each other. Thus, we substitute
dp1 = 1 andw = wmin into Equation (4) and we get

pf =
1

2
(1 + erf(

10 log 100.11×
√

2σ

√
dmin

σ
√

2
)).

Figure 7 shows that the probabilitypf of false alarm
decreases dramatically as the minimum distancedmin from
the attacker to the helper increases. In particular, if the
minimum distance is larger than 90 meters, the probability
of false alarm is smaller than 0.05 for a constant 0.05
probability of false negative.

If we assume thatpf < 0.05, we can use the same method
to get the thresholdw and the corresponding probabilitypd

of false negative:

w =

√

(1 + T1c× 10−0.11×
√

2σ)γ .
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Figure 7. Probability of false alarm vs minimum distance from the attacker
to the helper node for a constant 0.05 probability of false negative.

pd =
1

2
(1− erf(

10 log 10−0.11×
√

2σ
√

d

σ
√

2
)).

Figure 8 shows the probability of false negative for a
constant 0.05 probability of false alarm.
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Figure 8. Probability of false negative vs minimum distancefrom the
attacker to the helper node for a constant 0.05 probability of false alarm.

Figure 9 displays the tradeoff between the probability of
false alarm and the probability of false negative, whenσ =
2.5 and the minimum distance between the attacker and the
helper node is 50, 60, and 70 meters, respectively.
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Figure 9. Tradeoff between probability of false alarm and the probability
of false negative.



VI. I NTERACTION BETWEEN THEHELPERNODE AND

SECONDARY USERS

Intuitively, a helper node can notify secondary users if the
channel is open to them, since the helper node itself has the
ability to authenticate a primary user’s signal. However, in
this paper, we utilize link signatures to let secondary users
identify a primary user’s signal in a proactive way even when
the helper node is sleeping.

The objective of having a secondary user interact with
the helper node is to allow the secondary user to learn valid
link signature from the helper node. Thus, the interaction
between the secondary user and the helper node can be
considered as atraining process, during which the secondary
user collects enough valid link signatures that could be
used to verify future signals from the primary user. For
convenience, we refer to the link signatures collected during
the training process astraining link signatures, and the
packets from the helper node astraining packets.

Note that the helper node is not required to transmit
training packets all the time, and the training process may
be triggered periodically or at the requests of secondary
users. Our scheme allows the helper node to sleep during
non-training period (e.g., the time interval between the end
of a training process and the beginning of the subsequent
training process). However, secondary users can still work
in a proactive way even when the helper node is sleeping.
As a result, the probability of interfering the transmission
of the primary user is reduced. With training link signatures
acquired in training processes, secondary users can directly
verify whether a newly received signal is from the primary
user or not.

A. Obtaining Training Link Signatures

We assume that the helper node is able to deliver train-
ing packets to secondary users. For example, the helper
node may periodically sense the channel and broadcast
training packets to all secondary users if the channel is
open. Alternatively, we may use a request/reply protocol
between secondary users and the helper node. In other
words, if a secondary user does not have enough training link
signatures, it sends a request to the helper node through the
control channel, and the helper node then transmits training
packets back upon request. Our approach is independent of
the exact way training packets are triggered.

Upon receiving a packet from the helper node, a sec-
ondary user measures the link signature and verifies the
cryptographic signature in the received packet. If the cryp-
tographic signature is valid, the secondary user accepts the
corresponding link signature. Otherwise, the secondary user
has to discard both the link signature and the received packet.

It is well-known that public key cryptographic signatures
are expensive to generate and verify. A straightforward ap-
plication of cryptographic signatures will lead to substantial
overheads on the helper node as well as secondary nodes.

To enable efficient interaction between the helper node and
a secondary user, we propose to amortize the signature
generation and verification costs on both helper node and
secondary users.

Note that there are known ways for signature amortization
using cryptographic hash functions (e.g., [24], [31]). Thus,
we consider our contribution here secondary (compared with
the authentication method in Section V).

Amortizing Cryptographic Signature Costs: The helper
node randomly picks a numberrl and uses a one-way
cryptographic hash functionH to generates a one-way hash
chain r0 ← r1 ← ... ← rl, where ri−1 = H(ri) for
1 ≤ i ≤ l. It is well-known that given an authenticated
value ri in this hash chain, it is easy to authenticate any
later valuerj (i < j < l). However, it is computationally
infeasible to derive any laterrj (i < j < l) if no value
beyondri is known.

To reduce the signature cost, for each hash chain, the
helper node generates one and only one cryptographic sig-
nature onr0 using its private key. Letsig(r0) denote the
signature. Suppose the helper node needs to authenticate the
i-th packet since the generation of the hash chain. The helper
node then placer0, sig(r0), i, and ri in the packet. (The
helper node should certainly start withi = 0.) Thus, the
helper node never needs to generate another signature for
this hash chain.

Consider a secondary node that receives a packet using
the above hash chain from the helper node for the first time.
Note thati could be greater than 0 if this secondary node
has not received any packet from the helper node recently.
The secondary node then first verifies the signaturesig(r0).
If i = 0, the secondary node has successfully verified the
cryptographic signature from the helper node. However, if
i > 0, the secondary node needs to future hashri for i times
and compareH<i>(ri) with r0. If they match, the packet
is also valid. In any case, the secondary node should save
ri for future authentication.

If the secondary node has received and verified a signature
from the helper node with the same hash chain previously,
it must have saved an authenticated hash valuerj (j < i).
As a result, the secondary node does not have to verify the
signaturesig(r0) again. Instead, it only needs to compute
H<i−j>(rj) and compare the result withri. A match
indicates a successful authentication of the packet.

As we can see, the helper node needs to generate one
and only one cryptographic signature for each hash chain.
Similarly, each secondary node only needs to verify one
cryptographic signature once for each hash chain. Thus, this
amortization approach can greatly reduce the computational
overheads on both the helper node and the secondary node.

Defending against Replay Attacks:As discussed earlier,
a critical threat is that the attacker may replay intercepted
training packets from a valid helper node at its own location.
As a result, the attacker can convince secondary users



to accept the attacker’s link signatures as training link
signatures. Since the secondary users are not guaranteed
to have received the original transmission, traditional anti-
replay mechanisms such as sequence numbers, which are
intended for detecting replayed packet contents (rather than
replayed signals), will not work.

Fortunately, there are multiple known techniques to handle
replayed signals in wireless networks, such as the hardware-
based, authenticated Medium Access Control (MAC) layer
timestamping [33] and the method for detecting wireless
signals tunneled by a malicious node [20]. These techniques
can be adopted in CRNs to enable a secondary node and the
helper node to detect replayed training packets.

Alternatively, we may take advantage of potentially syn-
chronized clocks between valid secondary users and the
helper node to defend against such threats. According to
IEEE 802.22 standard [9], secondary users and base stations
are “required to use satellite based geo-location technology,
which will also facilitate synchronization among neighbor-
ing networks by providing a global time source.” We can
assign each value in the above hash chain to a specific
point in time. These times can be pre-scheduled such that all
secondary users know when each hash value should be used.
The helper node then transmits each hash value at the pre-
scheduled point in time, provided that the primary user is not
using the channel. When a secondary user receives a training
packet, it can use its local time and the pre-scheduled time
to estimate the transmission time of this packet. An overly
long transmission time indicates that the packet has been
replayed by the attacker.

Learning Training Link Signatures: To compute the
training link signature, the secondary user samples the re-
ceived signal using an A/D sampler, stores the firstκ+1 sam-
ples in a buffer, and demodulates the samples of the received
signal into a packet. If the packet can pass authentication,
the secondary user computes the link signature of the packet
using the storedκ + 1 samples. (See the Appendix for how
to compute link signatures.) Otherwise, the secondary user
discards the stored samples. The secondary user typically
needs to obtain a series of training link signatures for
verifying future signals.

B. Verifying Link Signatures

For a newly received signalsN , the secondary user first
measures its link signature, which is denoted byh

(N), and
then use training link signatures to verifyh(N).

Let H = {h(n)}N−1
n=1 denote the set of training link

signatures, whereh(n) is the link signature measured from
the i-th received training packet. The secondary user can
verify whethersN is transmitted by the primary user or not
using the location distinction algorithm proposed in [23].
Specifically, the secondary user calculates the distance (i.e.,
difference) betweenhN and the training setH, and then
compares the distance with a threshold. If the distance is

less than a threshold,sN is marked as the primary user’s
signal. Otherwise,sN may be sent by the attacker and the
secondary user ignores it. The method that can be used to
calculate distance is discussed in [23].

VII. E XPERIMENTAL EVALUATION

Our approach involves two types of authentication: au-
thentication of the primary user’s signal at the helper node,
and authentication of the primary user’s signal at a secondary
user. In this section, we report our experimental evaluation
to show the effectiveness of both methods.

We validate the proposed authentication methods using
the CRAWDAD data set [22], which includes over 9,300
real channel impulse response measurements (i.e., link sig-
natures) in a 44-node wireless network [32]. There are
44 × 43 = 1, 892 pairwise links between the nodes, and
multiple measurements are provided for each link [32].
The map of the 44 node locations is shown in [23]. The
measurement environment is an indoor environment with
obstacles (e.g., cubicle offices and furniture) and scatters
(e.g., windows and doors). More information regarding the
CRAWDAD data set can be found in [22], [32].

A. Authentication at the Helper Node

To avoid interfering with the primary user’s transmission,
the helper node needs to first sense the channel, and verify
whether a received signal is from the primary user. As
discussed earlier, false alarms and false negatives may occur
during the authentication process. Thus, we evaluate the
performance of the authentication method in terms of the
probability of false negative and the probability of false
alarm.

Recall that during authentication the helper node com-
putes the amplitude ratio of the first multipath component
to the second multipath component for each received signal.
If the amplitude ratio is larger than a threshold, then the
received signal is considered from the primary user. Other-
wise, it is considered from the attacker. Hence, false alarms
happen when the primary user’s amplitude ratio is less than
the threshold, and false negative happens when the attacker’s
amplitude ratio is larger than the threshold.

1) Probability of False Alarm:To obtain the amplitude
ratio of the primary user’s signal, we perform experiments
as follows. For1 ≤ i ≤ 44, we assume that nodei is
the helper node. For each of the remaining nodes, if there
is no obstruction between itself and nodei, we mark it
as a line-of-sight node. Among all line-of-sight nodes for
node i, we pick the one that is closest to nodei as an
approximation of the primary userp. Note that some nodes
do not have line-of-sight nodes in their vicinities, and thus
they are not used in our experiment (e.g., nodes 8 and 29 in
the map shown by [23]). Finally, we compute the amplitude
ratio using the primary user’s channel impulse responses
(i.e., link signatures of link(p, i)). The CRAWDAD data



set has multiple measurements for each link. Thus, we can
get multiple amplitude ratios for each link. We sort the
collected amplitude ratios and compute empirical cumulative
distribution function (CDF) for them. LetN denote the
number of the collected amplitude ratios,F (x) denote the
empirical CDF, andx1, ..., xN denote the sorted amplitude
ratios, wherexi ≤ xj for 1 ≤ i ≤ j ≤ N . The empirical
CDF F (xi) is given byF (xi) =

n≤xi

N
, wheren≤xi

is the
number of amplitude ratios that are less than or equal toxi.

Figure 10 shows the empirical CDF curve of the ampli-
tude ratios computed using primary users’ channel impulse
responses. This CDF curve can be used to derive the
probability of false alarm directly. For example, about5%
amplitude ratios are less than or equal to 5. Hence, if the
threshold is set to 5, then5% amplitude ratios are smaller
than the threshold and the probability of false alarm is 0.05.
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Figure 10. The empirical CDF curve of amplitude ratios computed using
primary users’ channel impulse responses

2) Probability of False Negative:We perform experiment
to examine the amplitude ratios of attackers’ signals. For
1 ≤ i ≤ 44, we assume that nodei is the helper node and
find its primary userp using the same method as discussed
in the above experiment. For each of the remaining nodes,
we calculate the distance between this node and the helper
node. We mark the node as the attacker if the calculated
distance is larger thanr times of the distance between the
helper node and the primary user, wherer is set to 2, 4, and
8 in our experiment. We compute the amplitude ratio for
nodei using the attacker’s channel impulse responses (i.e.,
link signatures of link(a, i), wherea is the node index of
the attacker).

Figure 11 shows the empirical CDF curves of all am-
plitude ratios computed using attackers’ channel impulse
responses. In particular, about95% amplitude ratios of
attackers’ signals are less than or equal to 5 for all possible
values ofr (i.e., r = 2, 4, 8). Based on the empirical CDF
of the amplitude ratios, we generate Figure 14 to show the
relationship between the probability of false negative and
the threshold. For instance, the empirical CDF indicates
that about95% amplitude ratios are less than or equal to
5. Hence, about5% amplitude ratios are larger than 5 and
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Figure 11. CDF curves of amplitude ratios computed using attackers’ link
signatures.

the probability of false negative is 0.05 if the threshold is
set to 5. It is shown in Figure 14 that the probability of false
negative decreases as the distance between the attacker and
the helper node increases (i.e.,r gets larger).
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Figure 12. Probability of false negative vs threshold

3) Trade off between Probability of False Alarm and
Probability of False Negative:Let PFA andPFN denote the
probability of false alarm and false negative, respectively.
We analyze the trade off betweenPFA and PFN by ex-
amining the relationship betweenPFA and the threshold, as
well as the relationship betweenPFN and the threshold. For
a particular value of threshold, the authentication approach
would achieve a particularPFA andPFN .

Table I shows the probabilityPFN when the probability
PFA of false alarm ranges between 0.05 and 0.2. IfPFA =
0.05, PFN is less than 0.0655, 0.0486, and 0.0321 forr = 2,
4, and8, respectively. For a constantPFA, PFN decreases
as the distance between the attacker and the helper node
increases (i.e.,r increases). In particular,PFN = 0.0655
when the distance between the attacker and the helper node
is larger than twice of the distance between the primary
user and the helper node (i.e.,r = 2). However,PFN falls
to 0.0321 when the distance between the attacker and the
helper node is 8 times larger than the distance between the
primary user and the helper node (i.e.,r = 8).



Table I
TRADE OFF BETWEENPF A AND PF N

PF A PF N (r=2) PF N (r=4) PF N (r=8)
0.05 ≤ 0.0655 ≤ 0.0486 ≤ 0.0321

0.1 ≤ 0.0248 ≤ 0.0163 ≤ 0.0155

0.15 ≤ 0.0109 ≤ 0.0070 ≤ 0.0066

0.2 ≤ 0.0053 ≤ 0.0032 ≤ 0.0022

B. Authentication at Secondary Users

During the authentication process at a secondary user, the
secondary user needs to verify whether a received signal
is from the primary user or not by looking at the distance
between the corresponding link signature and the training
set. We refer to the distance aslink difference. If the link
difference is smaller than a threshold, then the received
signal is considered from the primary user. Otherwise, the
signal is considered to be sent by an attacker and the
secondary user discards it.

Therefore, a false alarm happens if the link difference
between the primary user’s link signature and the secondary
user’s training set is larger than the threshold, and a false
negative happens if the link difference between the attacker’s
link signature and the secondary user’s training set is smaller
than the threshold. Similar to the authentication at the
helper node, we use the probability of false alarm and the
probability of false negative to measure the performance of
the proposed approach.

In our experiment, we compute the link differences be-
tween the primary user’s link signature and the secondary
user’s training set, as well as the link differences between
the attacker’s link signature and the secondary user’s training
set. Based on their statistical distributions, we examine how
likely false alarms and false negatives would happen.

1) Probability of False Alarm: To get the link differ-
ences between link signatures of the primary user and the
secondary user’s training set, we perform experiment as
follows. We pick all nodes one by one as the primary user.
Starting with node 1, we use the node closest to node 1 to
approximate the helper node (i.e., node 3 in the map [23]).
We further assume that all the other nodes (i.e., node 2 and
nodes 4-44 on the map [23]) are secondary users. For each
secondary users, we generate its training set using all link
signatures of the node pair(3, s) (i.e., the helper node’s link
signatures) andk (k = 0, 1, 2) link signatures of the node
pair (1, s) (i.e., the primary user’s link signatures). Then,
we compute link differencesd1

s, ..., d
np
s between the primary

user’s link signatures and the training set of nodes, where
np is the number of primary user’s link signatures.

We use the average value ofd1
s,... , d

np
s as the link

differences between the link signatures of node 1 and
the training sets of each secondary users. Similarly, we
assume that nodes 2,...,44 are primary users and perform
the same process to get the link differences between the

link signatures of nodes 2,...,44 and the training sets of the
secondary users.

Figure 13 shows curves of the empirical CDFs for the
collected link differences, where each training set contains
all measured link signatures of a helper node, andk (k =
0, 1, 2) measured link signatures of a primary user. Almost
all link differences are less than or equal to 10 when the
training set only contains the link signatures of a helper node
(i.e., k = 0). Once a primary user’s link signature is added
to the training set (i.e.,k = 1), the link differences decreases
dramatically. Figure 14 shows the relationship between the
probability of false alarm and the threshold.

10
−2

10
0

10
2

0

0.2

0.4

0.6

0.8

1

x
F

(x
)

 

 

k=0
k=1
k=2

Figure 13. CDF curves of link differences between the link signatures of
primary users and the training sets of secondary users.
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Figure 14. Probability of false alarm vs threshold

2) Probability of False Negative:We also perform experi-
ment to examine the link differences between link signatures
of attackers and training sets of secondary users. We assume
that node 1 is the attacker. We pick nodep as the primary
user and nodes as the secondary user such thatp 6= s 6= 1.
For each combination ofp and s, we first find the helper
node ofp. Let ph denote the helper node. Ifph 6= s 6= 1,
we generate the training set ofs using the same approach
as the first experiment. We then compute the link difference
d1

s,p, ..., d
na
s,p between the attacker’s link signatures and the

training set, wherena is the number of attacker’s link
signatures. After scanning all combinations, we use the
average value ofd1

s,p ,..., the average value ofdna
s,p as the



link difference between link signatures of node 1 and the
training sets of secondary users. Similarly, we assume that
nodes 2,...,44 are attackers and perform the same process to
get the link differences between the link signatures of nodes
2,...,44 and the training sets of secondary users.

Figure 15 shows the empirical CDF curves of the collected
link differences fork = 0, k = 1, andk = 2. Note that the
empirical CDF curves can be used to derive the probability
of false negative directly given a threshold. For example,
about 10% link differences are less than or equal to 7.5
whenk = 0. This means the probability of false negative is
0.1 for a threshold of 2.5.
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Figure 15. CDF curves of link differences between link signatures of
attackers and the training sets of secondary users.

3) Trade off between Probability of False Alarm and
Probability of False Negative:We derive the trade off be-
tween the probabilityPFA of false alarm and the probability
PFN of false negative by analyzing the relationship between
PFA (PFN ) and thresholds. Table II shows the result. To
achieve a 0.05 probability of false alarm, the probability
of false negative is less than 0.3188, which is actually a
loose upper bound. In our experiment, we use the node
closest to the primary user to approximate the helper node;
there is indeed an unnecessarily long distance between the
primary user and its helper node. Thus, the probability of
false negative is unnecessarily large in our experiment.

Note that allPFN ’s are less than the same value 0.0241
for k = 1. This is because the threshold ranges between
0.6282 and 0.6816 when0.05 ≤ PFA ≤ 0.2. This range is
quite narrow, and we can only find a singlePFN from the
empirical CDF of the attackers’ link differences. Similarly,
all PFNs are less than the same value 0.0240 fork = 2.

VIII. I MPLEMENTATION

We demonstrate the feasibility of the proposed approach
using a prototype implementation on Universal Software Ra-
dio Peripherals (USRPs) based on GNUradio [1]. Although
wireless signals transmitted by USRPs may not exhibit the
multipath properties due to low bandwidths, low power,
and short range communication with USRPs, the prototype
implementation nevertheless demonstrates the feasibility of

Table II
TRADE OFF BETWEENPF A AND PF N : THE PROBABILITY PD OF FALSE

NEGATIVE DECREASES ASk INCREASES

PF A (k = 0, 1, 2) PF N (k=0) PF N (k=1) PF N (k=2)
0.05 ≤ 0.3188 ≤ 0.0241 ≤ 0.0240

0.1 ≤ 0.2319 ≤ 0.0241 ≤ 0.0240

0.15 ≤ 0.1063 ≤ 0.0241 ≤ 0.0240

0.2 ≤ 0.0821 ≤ 0.0241 ≤ 0.0240

integrating cryptographic signatures and link signaturesfor
authenticating primary users’ signals in CRNs.

A USRP is a radio frequency (RF) front end that has an
analog to digital (AD) and a digital to analog (DA) converter,
which can achieve an input and output sampling rate up to 64
Mb/s and 128 Mb/s, respectively. GNUradio is a software
toolkit consisting of signal processing blocks that can be
used to implement software radios on readily-available, low-
cost external RF hardware and commodity processors (e.g.,
USRPs) [1].

We connect one USRP to a Lenovo X61 laptop (1.80 GHz
Intel Core Duo CPU), and one USRP to a DELL machine
(3.40 GHz Intel Pentium 4 CPU) via USB 2.0 links. Both
computers are running Linux (Ubuntu 9.04) and GNUradio
(version 3.2.2), and both USRPs employ XCVR2450 daugh-
ter boards as transceivers. We implement the helper node and
the secondary user applications using GNUradio toolkit, and
install the helper node and the secondary user application on
the laptop and the DELL machine, respectively.

The helper node application generates signed packets
using the method described in Section VI-A, where we
employed MD5 as the one-way function and RSA as the
cryptographic signature algorithm. The signed packets are
modulated into physical layer symbols by a differential
binary phase-shift keying (DBPSK) modulator. Then all
physical layer symbols enter a pulse shape filter, which trans-
forms those symbols into baseband signals. The baseband
signals are delivered to the USRP, converted into RF signals,
and finally transmitted to the wireless channel through the
antenna.

Upon capturing a RF signal, the secondary user applica-
tion down-converts the RF signal into baseband signal. Then
the baseband signal is recorded and delivered to a DBPSK
demodulator. If the output of the demodulator can pass the
verification, the secondary user reconstructs the transmitted
signal from the demodulation output, and computes the 512-
points complex Fourier transformF1 andF2 of the baseband
signal and the transmitted signal, respectively. Finally,F1 is
multiplied by the conjugate ofF2, and the inverse Fourier
transformation is used to calculate the link signature as
described in the Appendix.

In our experiment, the packet length is 75 bytes, the bit
rate is 2Mbit/s, and the carrier frequency is 5GHz. The
laptop and the Dell machine are used as the transmitter and
the receiver, respectively. We first put the transmitter about 5



meters away from the receiver, and let the transmitter send a
signed packet to the receiver. Upon reception of the packet,
the receiver verifies the cryptographic signature in the packet
and measures the link signature. Then we move the trans-
mitter to positiona and positionb, which is about 0.5 meter
and 15 meters away from the old position, respectively.
At both positions, we let the transmitter transmit signed
packets to the receiver. Figure 16 displays the measured
link signatures for different positions, we observe that the
link signatures of the old position and positiona are mixed
together, and the link signature of positionb greatly deviates
from the mixed ones. This observation is consistent with our
analytical result.
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Figure 16. Measured link signatures for old position, position a, and
position b

In our approach, generating signatures, verifying sig-
natures, computing Fourier transform, and inverse Fourier
transform are four major operations that are indispensable.
To get an intuitive feeling of the computational overhead
introduced by these operations, we did an experiment using
the prototype system to test the computation time. We
let the transmitter transmits 1,000 packets to the receiver
every 0.1 second, and record the computation time by those
operations.

Note that the transmitter (or the receiver) only needs to
generate (or verify) the cryptographic signaturesig(r0) in
the first packet. For all the following packets, the transmitter
signs them by simply appendingsig(r0) and the correspond-
ing hash values to them, and the receiver verifies them by
computing and comparing hash values. Table III shows the
time costs of signing (verifying) those packets. In practice,
the calculation of link signatures can be performed more
efficiently with Fourier transform implemented on special
hardware (e.g., Virtex 2 Pro 50 Fast Fourier transform
(FFT) core, which can finish the 512 points complex Fourier
transform with in less than 5.5 microseconds).

IX. RELATED WORK

Primary user detection has been intensively studied in
the past few years (e.g., [12], [17], [25], [26], [29], [30],

Table III
COMPUTATION TIME (MILLISECONDS)

Operations Time range Average
Signing 0.1699-0.0239 0.0441

Verification 0.4519-0.0781 0.1288

Fourier transform 1.4000-0.4200 0.5612

Inverse Fourier transform 0.7310-0.21901 0.2920

[34], [37]). Traditional detection techniques in general can
be categorized into energy detection (e.g., [30]) and fea-
ture detection (e.g., [12], [25], [26], [29], [37]). In energy
detection, any captured signal whose energy exceeds a
threshold is identified as a primary user’s signal. In feature
detection, signal features (e.g., pilot, synchronizationwords,
and cyclostationarity) are extracted and used to detect the
presence of a primary user’s signal. However, those tradi-
tional techniques will fail in hostile environments, where
an attacker transmits with large power or mimics a primary
user’s signal features to gain unfair share of the bandwidth.

A recent attempt considered the security aspects of pri-
mary detection and proposed to utilize RSS-based loca-
tion distinction for detecting primary users’ signals in the
presence of attackers [4]. Specifically, a secondary user
verifies whether a received signal is from a primary user
or not by estimating the location of the signal source. If
the estimation result deviates from the known location of
the primary user, it is highly possible that the signal is
sent by an attacker. However, as indicated in [23], RSS-
based location distinction approach, which is used in [4],
can be easily disrupted if the attacker is equipped with array
antennas. Moreover, such an approach requires multi-node
collaboration, which is expensive in terms of bandwidth and
energy.

In our work, we designed a primary user detection scheme
by exploiting link signatures, which do not have the weak-
ness of RSS based location distinction and achieve a higher
accuracy [23], [38]. We integrate cryptographic and wireless
link signatures to authenticate a primary user’s signal, and
use two levels of detections (i.e., detection at a helper andat
a secondary user) to address the technical challenges caused
by adopting link signatures in CRNs.

There are other related works, including cooperative fea-
ture detection or energy detection [11], [21], [28], [36],
secure data fusion in the presence of false information for
distributed spectrum sensing [5], [35], performance evalu-
ation of primary user detection in IEEE 802.22 [7], trade
off between a secondary user’s data transmission and the
detection of a primary user’s signal [16], and IEEE 802.22
standard for CRNs [8], [9]. These works are complementary
to ours.

X. CONCLUSION

In this paper, we developed a novel approach for authen-
ticating primary users’ signals in CRNs, which conforms to



FCC’s requirement. Our approach integrates cryptographic
signatures and wireless link signatures to enable primary
user detection in the presence of attackers. Essential to
our approach is ahelper nodeplaced physically close to
each primary user, which serves as a “bridge” to enable a
secondary user to verify the cryptographic signature carried
by the helper node’s signals, and then obtain the helper
node’s authentic link signatures to verify the primary user’s
signals. A key contribution in our paper is a novel physical
layer authentication technique that enables the helper node
to authenticate signals from its associated primary user.
Unlike previous techniques for link signatures, our approach
explores the geographical proximity of the helper node to the
primary user, and thus does not require any training process.

We have examined the proposed approach through theo-
retical analysis, experimental evaluation using the CRAW-
DAD data set [22], and a prototype implementation on
USRPs based on GNUradio [1]. Our results indicate that the
proposed approach is a promising solution for authenticating
primary users’ signals in CRNs.
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APPENDIX

In this appendix, we explain how we use the methodology
proposed in [23] to compute the link signature of the stored
κ + 1 samples.

Let r = [r(0), ..., r(κTr)] denote the samples of the
received signalr(t), whereTr is the sampling rate. Based on
the demodulation results, the secondary user can recreate the
transmitted signals(t). Let s = [s(0), ..., s(κTr)] denote the
correspondingκ + 1 samples of the transmitted signals(t).
Let R(iTr) and S(iTr) be the discrete Fourier transform
of r(iTr) and s(iTr), respectively. According to [23], the
link signatureh = [h(0), ..., h(κTr)], which are theκ + 1
samples ofh(t), can be calculated as

h(iTr) =
1

Ps

F−1(S∗(iTr)R(iTr)),

whereF−1(·) denote the inverse discrete Fourier transform,
S∗(iTr) is the complex conjugate ofS(iTr), and Ps =
S∗(iTr) ∗ S(iTr).


