
Defending DSSS-based Broadcast Communication against
Insider Jammers via Delayed Seed-Disclosure∗

An Liu, Peng Ning, Huaiyu Dai, Yao Liu
North Carolina State University

{aliu3, pning, huaiyu_dai, yliu20}@ncsu.edu

Cliff Wang
U.S. Army Research Office

cliff.wang@us.army.mil

ABSTRACT
Spread spectrum techniques such as Direct Sequence Spread Spec-
trum (DSSS) and Frequency Hopping (FH) have been commonly
used for anti-jamming wireless communication. However, tradi-
tional spread spectrum techniques require that sender and receivers
share a common secret in order to agree upon, for example, a com-
mon hopping sequence (in FH) or a common spreading code se-
quence (in DSSS). Such a requirement prevents these techniques
from being effective for anti-jammingbroadcastcommunication,
where a jammer may learn the key from a compromised receiver
and then disrupt the wireless communication. In this paper, we de-
velop a novel Delayed Seed-Disclosure DSSS (DSD-DSSS) scheme
for efficient anti-jamming broadcast communication. DSD-DSSS
achieves its anti-jamming capability through randomly generating
the spreading code sequence for each message using a random
seed and delaying the disclosure of the seed at the end of the mes-
sage. We also develop an effective protection mechanism for seed
disclosure using content-based code subset selection. DSD-DSSS
is superior to all previous attempts for anti-jamming spread spec-
trum broadcast communication without shared keys. In particular,
even if a jammer possesses real-time online analysis capability to
launch reactive jamming attacks, DSD-DSSS can still defeat the
jamming attacks with a very high probability. We evaluate DSD-
DSSS through both theoretical analysis and a prototype implemen-
tation based on GNU Radio; our evaluation results demonstrate that
DSD-DSSS is practical and have superior security properties.

1. INTRODUCTION
Spread spectrum wireless communication techniques, including

Direct Sequence Spread Spectrum (DSSS) and Frequency Hopping
(FH), have been commonly used for anti-jamming wireless com-
munication [6]. However, with traditional spread spectrum tech-
niques, it is necessary for senders and receivers to share a secret key

∗This work is supported by the National Science Foundation un-
der grants CNS-1016260 and CAREER-0447761, and by the Army
Research Office under staff research grant W911NF-04-D-0003.
The contents of this paper do not necessarily reflect the position
or the policies of the U.S. Government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC’10 Dec. 6-10, 2010, Austin, Texas USA
Copyright 2010 ACM 978-1-4503-0133-6/10/12 ...$10.00.

to determine, for example, the frequency hopping patterns in FH
and the Pseudo-Noise (PN) codes in DSSS. Otherwise, sender and
receivers cannot establish anti-jamming communication. More-
over, if a jammer knows the secret key, she can replicate the secret
hopping pattern or PN codes and jam the wireless communication.

The above limitations of traditional anti-jamming techniques have
motivated a series of recent research. To remove the dependency
on pre-shared keys, an Uncoordinated Frequency Hopping (UFH)
technique was recently developed to allow two nodes to establish
a common secret for future FH communication in presence of a
jammer [19]. This approach was latter enhanced in [18, 20] with
various coding techniques to provide more efficiency and robust-
ness during key establishment.

Besides UFH and its variations [18–20], two other approaches
were recently investigated to enable jamming-resistant broadcast
communicationwithoutshared keys [2, 15]. BBC was proposed to
achieve broadcast communication by encoding data into “indelible
marks” (e.g., short pulses) placed in “locations” (e.g., time slots),
which can be decoded by any receiver [2, 3]. However, the decod-
ing process in BBC is inherently sequential (i.e., the decoding of
the next bit depends on the decoded values of the previous bits).
Though it works with short pulses in the time domain, the method
cannot be extended to DSSS or FH without significantly increasing
the decoding cost.

An Uncoordinated DSSS (UDSSS) approach was recently de-
veloped [15], which avoids jamming by randomly selecting the
spreading code sequence for each message from a public pool of
code sequences. UDSSS allows a receiver to quickly identify the
right code sequence by having each code sequence uniquely iden-
tified by the first few codes. However, if the jammer has enough
computational power, using the same property, she can find the cor-
rect sequence before the sender finishes the transmission and jam
the remaining transmission. Thus, UDSSS is vulnerable toreac-
tive jamming attacks, where the jammer can analyze the first part
of transmitted signal and jam the rest accordingly. To mitigate such
attacks, a solution similar to ours was proposed in [14]. The ba-
sic idea is to spread each message using a key and transmit the key
later using UDSSS. To mitigate the reactive jamming attack against
the key transmission, UDSSS can trade the resilience for efficiency
by setting a larger spreading code sequence set size. On the con-
trary, our paper tries to provide an alternative solution achieving
both resilience and efficiency.

In this paper, we develop Delayed Seed-Disclosure DSSS (DSD-
DSSS), which provides efficient and robust anti-jamming broadcast
communication without suffering from reactive jamming attacks.
The basic idea is two-fold: First, the code sequence used to spread
each message is randomly generated based on a random seed only
known to the sender. Second, the sender discloses the random seed

at the end of the message, after the message body has been trans-
mitted. A receiver buffers the received message; it can decode the
random seed and regenerate the spreading code using the seed to
despread the buffered message. A jammer may certainly try the
same. However, when the jammer recovers the random seed and
spreading code sequence, all reachable receivers have already re-
ceived the message; it is too late for the jammer to do any damage.

We also develop acontent-based code subset selectionscheme to
protect the random seed disclosure. We use the content of the seed
to give some advantage to normal receivers over reactive jammers.
This scheme allows a normal receiver, who starts decoding a mes-
sage after fully receiving the message, to quickly decode the ran-
dom seed. In contrast, a jammer, who needs to disrupt the message
while it is being transmitted, has to consider many more choices.

Our contribution in this paper is as follows. First, we develop the
novel DSD-DSSS scheme to provide efficient anti-jamming broad-
cast communication without shared keys. Our approach is superior
to all previous solutions. Second, we develop a content-based code
subset selection method to provide effective protection of seed dis-
closure in DSD-DSSS. Third, we give in-depth performance and
security analysis for these techniques in presence of various forms
of jammers, including reactive jammers that possess real-time on-
line analysis capabilities. Our analysis demonstrates that our ap-
proach provides effective defense against jamming attacks. Finally,
we implement a prototype of DSD-DSSS using USRPs and GNU
Radio to demonstrate its feasibility.

The remainder of the paper is organized as follows. Section 2
describes background information about DSSS. Section 3 presents
our assumptions and the threat model. Section 4 proposes DSD-
DSSS and analyzes its anti-jamming capability and performance
overheads. Section 5 gives the content-based code subset selection
scheme and analyzes its effectiveness. Section 6 shows the imple-
mentation and experimental evaluation of DSD-DSSS. Section 7
describes related work, and Section 8 concludes this paper.

2. BACKGROUND
Spread spectrum techniques, including DSSS and FH, use a much

larger bandwidth than necessary for communications [6, 16]. Such
bandwidth expansion is realized through a spreading codeinde-
pendentof the data sequence. In DSSS, each data bit is spread
(multiplied) by a wide-band code sequence (i.e., thechipping se-
quence). The spreading code is typically pseudo-random, com-
monly referred to asPseudo-Noise (PN) code, rendering the trans-
mitted signal noise-like to all except for the intended receivers,
which possess the code to despread the signal and recover the in-
formation.

Figure 1 shows the typical steps in DSSS communication. Given
a message to be transmitted, typically encoded with Error Correc-
tion Code (ECC), the sender first spreads the message by multi-
plying it with a spreading code. Each bit in the message is then
converted to a sequence of chips1 according to the spreading code.
The result is modulated, up-converted to the carrier frequency, and
launched on the channel. At the receiver, the distorted signal is
first down-converted to baseband, demodulated through a matched
filter, and then despread by a synchronized copy of the spreading
code. The synchronization includes both bit time synchronization
and chip time synchronization, guaranteeing that receivers know
when to apply which spreading code in order to get the original
data. Alternatively, a DSSS system may modulate the signal be-

1To distinguish between bits in the original message and those in
the spread result, following the convention of spread spectrum com-
munication, we call the “shorter bits” in the spread result aschips.

receiversender

message

channel

message

Spreading Code

Modulator Demodulator

Spreading Code

Synchronization

Carrier

Frequency

Carrier

Frequency

Figure 1: DSSS communication system

fore the spreading step at sender, and despread and demodulate the
received signal at receiver.

The performance of DSSS communication depends on the de-
sign of spreading codes. A spreading codec(t) typically consists of
a sequence ofl chipsc1, c2, ..., cl, each with value 1 or−1 and du-
ration ofTc, wherel is the code length andTc is chip duration. As-
sume the bit duration isTb. The number of chips per bitl = Tb/Tc

approximates the bandwidth expansion factor and the processing
gain. Two functions characterize spread code:auto-correlation
andcross-correlation. Auto-correlation describes the similarity be-
tween a code and its shifted value. Good auto-correlation property
means the similarity between a code and its shifted value is low;
it is desired for multi-path rejection and synchronization. Cross-
correlation of two spreading codes describes the similarity between
these two codes; low cross-correlation is desired for multiuser com-
munications.

3. ASSUMPTIONS AND THREAT MODEL
In this paper, we consider the protection of DSSS-based wireless

broadcastcommunication against jamming attacks (i.e., one sender
and multiple receivers). We adopt the same DSSS communication
framework as illustrated in Figure 1. However, the sender and re-
ceivers use different strategies to decide what spreading codes to
use during broadcast communication. That is, our approach cus-
tomizes the generation and selection of spreading codes during
DSSS communication to defend against insider jamming attacks.

We assume that the jammers’ transmission power is bounded.
In other words, a jammer cannot jam the transmission of a mes-
sage unless she knows the spreading codes used for sending the
message. For simplicity, we assume the length of each broadcast
message is fixed. Such an assumption can be easily removed, for
example, by using a message length field.

Threat Model: We assume that the attacker may compromise
some receivers, and as a result, can exploit any secret they possess
to jam the communication from the sender to the other receivers.
We assume intelligent jammers that are aware of our schemes. In
addition to injecting random noises, the jammer may also modify
or inject meaningful messages to disrupt the broadcast communi-
cation.

The jammers may possess high computational capability to per-
form real-time online analysis of intercepted signal. However, due
to the nature of DSSS communication (i.e., each bit data is trans-
mitted through a sequence of pseudo-random chips), it takes time
for a jammer to parse the chips for any 1-bit data to determine
the spreading code. When the jammer receives enough chips for a
given bit to guess the spreading code with a high probability, most
of the chips have already been transmitted. Jamming the remaining
chips will not have high impact on the reception of this bit. Thus,
we assume that if a jammer does not know the spreading code for
any 1-bit data, she cannot jam its transmission based on real-time

sender

receiver

buffer:

random seed si
pseudo-random

generator

code sequence csm for mi:

Cp[mid1]||Cp[mid2]||…||Cp[midlm]

S(csm,mi) S(cse,si)

random indexes:

sid1||sid2||…||sidls

S S

message mi

S(csm,mi) S(cse,si)

sliding window

with Ce

sliding window

with Ce

Ce

D
pseudo-random

generator
si

synchronized

D

check error detection code

random indexes:

mid1||mid2||…||midlm

draw codes from Cp

code sequence cse for si:

Ce[sid1]||Ce[sid2]||…||Ce[sidls]

draw codes from Ce

code sequence csm for mi:

Cp[mid1]||Cp[mid2]||…||Cp[midm]

mid1||mid2||…||midlm

draw codes from Cp

message mi

send to upper layer

Fail

Fail

Fail

s
h

if
t

s
lid

in
g
 w

in
d
o

w

1
 c

h
ip

 r
ig

h
t

Figure 2: Delayed seed-disclosure DSSS (DSD-DSSS)

analysis of the signal.

4. BASIC DSD-DSSS
The basic idea of DSD-DSSS is two-fold. First, the code se-

quence used to spread a broadcast message is randomly generated
based on a random seed only known to the sender. Thus, nobody
except for the sender knows the right spreading code sequence be-
fore the sender discloses it. Second, the sender discloses the ran-
dom seed at the end of the broadcast message, after the main mes-
sage body has been transmitted. A receiver buffers received sig-
nal (or more precisely, received chips); it can decode the random
seed and regenerate the spreading code sequence accordingly to
despread the buffered chips. A jammer may certainly attempt the
same thing. However, when the jammer recovers the seed and the
spreading code sequence, all reachable receivers have already re-
ceived the message. It is too late for the jammer to do any damage.
Figure 2 illustrates the sending and receiving processes in DSD-
DSSS. In the following, we describe this new scheme in detail.

4.1 Spreading Code Sets
Similar to traditional DSSS communication, DSD-DSSS uses

spreading codes with good auto-correlation and low cross-correlation
properties (e.g., PN codes).

DSD-DSSS keeps two sets ofpublicly knownspreading codes:
Cp andCe. Codes inCp are used to spread the message bodymi,
while codes inCe are used to spread the random seed at the end
of each message. We require thatCp andCe have no overlap (i.e.,
Cp∩Ce = ∅). For convenience, we give each code inCp (orCe) a
unique index. For a given indexi for Cp (or Ce), we useCp[i] (or
Ce[i]) to refer to thei-th code inCp (orCe).

We use individual bits in the message as the basic units of spread-
ing. That is, each bit is spread with a different spreading code. As
a result, even if an intelligent jammer can infer the spreading code
for the current bit through real-time analysis, she cannot use this
code to jam the following bit.

4.2 Sender
Given alm-bit messagemi, the sender encodesmi in two parts:

message bodyandrandom seed.
Spreading Message Body: The sender first generates a random

seedsi, and then uses a pseudo-random generator with seedsi to
generate a sequence oflm random indexesmid1‖mid2‖...‖midlm ,
where1 ≤ midi ≤ |Cp|. The sender then generates a sequence of
spreading codescsm for mi by drawing codes fromCp using these
indexes. That is,csm = Cp[mid1]‖Cp[mid2]‖...‖Cp[midlm].
The sender then usescsm to spreadmi (i.e., each codeCp[midk]
is used to spread thek-th bit of mi). For convenience, we de-
note the spread message body (more precisely, the spread chips) as
S(csm,mi).

Spreading Seed: A naive method is to disclose the seedsi right
after the spread message bodyS(csm,mi) so that receivers can re-
coversi from the end of the message, generatecsm usingsi, and
despread the message. However, such a method is highly vulner-
able to jamming attacks. Indeed, a jammer can simply disrupt the
seed transmission to prevent the message from being received.

To prevent jamming attacks against the disclosed seed, the sender
spreads the seedsi using codes randomly selected fromCe, one of
the public code sets. Assume the seed hasls bits. The sender ran-
domly drawsls codes independently fromCe to form a sequence of
ls spreading codes, denotedcss = Ce[sid1]‖...‖Ce[sidls], where
sid1, ..., sidls are random integers between 1 andls. The sender
then spreads thek-th bit in the seedsi with the corresponding code
Ce[sidk], where1 ≤ k ≤ ls. The spreading results are then modu-
lated, up-converted to the carrier frequency, and transmitted in the
communication channel.

4.3 Receiver
As shown in Figure 2, each receiver keeps sampling the chan-

nel through down-conversion and demodulation, and saves the re-
ceived chips in a cyclic buffer. Each receiver continuously pro-
cesses the buffered chips to recover possibly received messages.To
recover a meaningful message, a receiver has to first synchronize
the buffered chips (i.e., align the buffered chips with appropriate
spreading code) and then despread them.

Synchronization and Recovery of Seed: The goal of synchro-
nization is to identify the positions of the chips of a complete mes-
sage in the buffer before despreading them. The key for synchro-
nization is to locate the seed, which occupies the lastl × ls chips
in a message.

As shown in Figure 2, a receiver uses a sliding window with
window sizels × l to scan and locate the seed in the buffer, where
ls is the number of bits in a seed andl is the number of chips in
a spreading code. The sliding window is shifted to the right by 1
chip each time.

In each scan, the receiver first uses the public code setCe to
despread the chips in the sliding window to synchronize with the
sender. Conceptually, the receiver partitions thels × l chips into
ls groups, and tries each code inCe to despread each group in the
window. Note that using a set of codes with good auto-correlation
and low cross-correlation properties, we can get high correlation
and despread a bit successfully only when the same code (as the
one used for spreading) is used to despread the encoded chips in
the right position. If the despreading is successful for every group,
the content in the window is a seed, which has been successfully
recovered. At the same time, the position of the message body in
the buffer is determined, i.e., thelm × l chips to the left of the
window in the buffer belong to the message body. Otherwise, the
receiver shifts the window to the right by 1 chip and repeats the
same process. This process can be further optimized. We omit the

details, since it is not critical for the presentation of our approach.
Despreading Message Body: Once a receiver recovers a seedsi

and determines the position of a received message in the buffer, it
follows the same procedure as the sender to generate the sequence
of spreading codescsm = Cp[mid1]‖Cp[mid2]‖...‖Cp[midlm].
The receiver then despreads the message body usingcsm. Specif-
ically, the receiver partitions the chips buffered for the message
body into lm groups, each of which hasl chips, and uses code
Cp[midk] to despread thek-th group of chips (1 ≤ k ≤ lm).

At the end of this process, the receiver will recover the message
bodymi and forward it to upper-layer protocols for further pro-
cessing (e.g., error detection, signature verification).

4.4 Security Analysis
To show the effectiveness of DSD-DSSS against jamming at-

tacks, we analyze the jamming probability in DSD-DSSS under
different jamming attacks. Following the classification in [13],
we consider two kinds of jamming attacks:non-reactivejamming
andreactivejamming attacks. A non-reactive jammer continuously
jams the communication channel without knowledge about actual
transmissions, while a reactive jammer detects the transmission be-
fore jamming the channel. The jammer can apply three strategies
to each attack:static, sweep, andrandomstrategies. In the static
strategy, the jammer uses the same code to jam the channel all the
time. In the sweep strategy, the jammer periodically changes the
code for jamming and does not reuse a code until all other codes
have been used. In the random strategy, the jammer periodically
changes the jamming code to a random code.

We also consider Denial of Service (DoS) attacks targeting at
seed disclosure at receivers, in which the jammer attempts to force
receivers to deal with a large number of candidate seeds.

4.4.1 Jamming Attacks
DSD-DSSS provides strong resistance against jamming attacks.

Because each message is spread with a pseudo-random code se-
quence decided by a random seed, no one except for the sender can
predict the spreading code sequence and jam the communication.
The random seed is disclosed at the end of each message. Thus,
when a jammer learns the seed, it is already too late to jam the
transmitted message with it. A jammer may certainly try to jam
the transmission of the random seed. However, each bit of the seed
is spread with a code randomly selected from a code set (i.e.,Ce),
making it hard for a jammer to predict.

In the following, we provide a quantitative analysis of the jam-
ming probabilities in various jamming scenarios. A jammer has
two targets in each message: message body and seed. The jammer
may jam the message body directly, or the seed so that receivers
cannot recover the seed and then the spreading code sequence for
the message body. To successfully jam even one bit of the message
body, the jammer has to know the spreading code for that bit and
synchronize her chips with those of the transmitted message.

Non-reactive Jamming Attacks: Non-reactive jammers do not
rely on any information about the transmitted messages. Thus, they
have to guess the spreading code and synchronization. We consider
all three jamming strategies (i.e., static, sweep, and random) [13]
and provide the jamming probabilities in the following two Theo-
rems. The proofs are trivial and omitted due to space limit.

THEOREM 1. When DSD-DSSS is used, the jamming proba-
bility of a non-reactive jammer with the static strategy is at most

1−
(

1− 1
l|Cp|

)lm

if the jammer targets the message body, and is

at most1−
(

1− 1
l|Ce|

)ls

if the jammer targets the seed.

�������

�������

�������

�������

�������

�������

����� ����� ����� ����� ����� 	����
����

��
�
�
��
�
��
	

�
�
�
��
�
�

����

�����������������

�����������������

������������������

�����������������

�����������������

������������������

�������

��������

���������� ��������

Figure 3: Maximum jamming probability for non-reactive and
reactive jamming attacks (lm = 1024; ls = 64; |Ce| = |Cp|; l =
100 or 200)

THEOREM 2. When DSD-DSSS is used, the jamming probabil-
ity of a non-reactive jammer with the random (or sweep) strategy

is at most1−
(

1− 1
l(|Cp|+|Ce|)

)lm+ls

.

Reactive Jamming Attacks: A reactive jammer can detect the
sender’s transmission and perform real-time analysis of the trans-
mitted signal. It can further synchronize with the sender so that she
knows the precise chip layout of the transmitted message. How-
ever, as mentioned in Section 3, if a reactive jammer does not
know the spreading code for any given bit data, she cannot jam the
transmission based on real-time analysis. Nevertheless, the reactive
jammer only needs to guess the sender’s spreading code to jam the
communication. This increases the jamming probability compared
with simple non-reactive jamming attacks. Similar to non-reactive
jammer, the reactive jammer can also use static, random, or sweep
jamming strategies to jam the channel. We give the jamming prob-
ability for all three strategies in Theorem 3 below. (The proof is
omitted due to space limit.) Note that the jamming strategy no
longer has direct impact on the maximum jamming probability.

THEOREM 3. When DSD-DSSS is used, the jamming proba-

bility of reactive jamming attacks is at most1 −
(

1− 1
|Cp|

)lm ·
(

1− 1
|Ce|

)ls

.

Figure 3 shows the jamming probabilities of both non-reactive
and reactive jamming attacks, in which|Cp| = |Ce|, both ranging
from 1,000 to 7,000, the sizes of message body and random seed are
lm = 1, 024 bits andls = 64 bits, respectively, and the lengthl of
each code is set to 100 or 200. Figure 3 shows that the reactive jam-
ming attacks have much more impact than non-reactive jamming
attacks due to the jammer’s ability to synchronize with the sender.
In all non-reactive jamming attacks, the jamming probabilities are
no more than0.01. However, even when|Cp| = |Ce| = 7, 000,
the reactive jammer’s jamming probability is still0.14. Figure 3
also shows that using Error Correction Code (ECC) can reduce the
jamming probability dramatically. Simply using an ECC that can
tolerate 1 bit error can lower the reactive jammer’s jamming prob-
ability from 0.14 to 0.009.

The above results demonstrate that DSD-DSSS is effective in de-
fending against jamming attacks, even when the jammer launches
sophisticated reactive jamming attacks.

4.4.2 DoS Attacks against Seed Disclosure
DSD-DSSS has good resistance against various jamming attacks.

However, an attacker may also inject bogus seeds or bogus mes-
sages, faking message transmissions from the sender. Indeed, this

is a problem common to all wireless communication systems. As
long as a communication channel is accessible to an attacker, she
can always inject fake messages. An authentication mechanism
(e.g., digital signature) is necessary to filter out such fake messages.

An attacker may go one step further to launch DoS attacks tar-
geting the seed disclosed at the end of each message. Specifically,
the attacker may inject bogus seeds by continuously drawing a code
from Ce, spreading a random bit, and transmitting it to receivers.
A receiver will see a continuous stream of possible seeds being
disclosed. Without any further protection, the receiver will have
to attempt the decoding of a message with all possible seeds. An
attacker may use multiple transmitters to inject multiple transmis-
sions of each bit in a seed. As a result, the receiver may have to
try the combinations of these options when decoding the messages.
In Section 5, we will present an enhanced scheme to better protect
seed disclosure against such DoS attacks in DSD-DSSS.

4.5 Performance Overheads
Computation Overhead and Delay: In terms of computation,

the sender needs to generate a random seed, generate a spreading
code sequence using a pseudo-random generator, and spread both
the seed and the message body. All these operations can be per-
formed efficiently and lead to negligible delay.

A receiver needs to synchronize with the sender’s chips, de-
spread and decode the seed, regenerate the spreading code sequence
for the message body, and despread the message body. With the ex-
ception of synchronization and recovery of the seed, all other oper-
ations can be efficiently performed. Synchronization and recovery
of seed are computationally expensive. A receiver should use all
codes inCe to despread everyl chips in the buffer. Compared with
traditional DSSS, this process is at least|Ce| times more expensive.

DSD-DSSS introduces more receiver side delay than traditional
DSSS, particularly because a receiver cannot start decoding a re-
ceived message until the seed is recovered. Assume a straightfor-
ward implementation on the receiver side. For a received message,
the time delay for the receiver to find the seed isl(lm+1)|Ce|t, and
the time delay to further recover the seed is(ls − 1)|Ce|t, where
t is the time required to despreadl chips. The sum of these two
delays constitute the majority of the receiver side delay. Note that
this process can be parallelized to reduce the receiver side delay.

Storage Overhead: DSD-DSSS requires a buffer to store the
chips of a potential incoming message. When a message is being
processed, a receiver has to buffer another message potentially be-
ing transmitted. Moreover, when there are multiple senders broad-
casting at the same time, a receiver needs to buffer for decoded
messages from all of them. Thus, in DSD-DSSS, a receiver needs
storage that is possibly tens of times of that required by traditional
DSSS. Nevertheless, considering the typical message size (e.g., a
few hundred bytes) and the low cost of memory today, such a stor-
age overhead is certainly affordable on a communication device.

Communication Overhead: DSD-DSSS adds a random seed at
the end of each broadcast message, resulting in more communica-
tion overhead than traditional DSSS. Nevertheless, compared with
the size of a typical message body (e.g., a few hundred bytes), the
size of a random seed (e.g., 8 bytes) is negligible. Thus, DSD-
DSSS introduces very light communication overhead.

5. EFFICIENT AND JAMMING-RESISTANT
SEED DISCLOSURE

In this section, we enhance the basic DSD-DSSS scheme by
developing a more effective protection of seed disclosure for the
DoS threat discussed in Section 4.4.2. This approach gives normal

receivers more advantages over jammers. It is based on the ob-
servation that a normal receiver can wait until a message is fully
received to decode its content, while a jammer, to be effective in
jamming, has to determine the jamming code when the message is
being transmitted.

We proposecontent-based code subset selectionfor spreading
and despreading the seed. The basic idea is to use the content of
the seed to give some advantage to normal receivers. Specifically,
the sender spreads the seed bit-by-bit from the end to the begin-
ning. For each bit (except for the last one), the sender uses both
the value and the spreading code of the later bit to determine its
candidate spreading codes, which are a small subset of all possi-
ble codes. Note that when a receiver starts decoding a message, it
already has the entire message buffered. Thus, a receiver can fol-
low the same procedure as the sender to recover the small subset
of candidate codes for each bit of the seed. However, without the
complete message, a jammer has to consider many more spreading
codes. Any code not in the right subset will be ignored by normal
receivers. Moreover, even if some codes chosen by jammers are
accepted by chance, the receivers do not need to consider the com-
binations of all accepted codes in different bit positions in the seed,
avoiding the most serious DoS attack.

The basic DSD-DSSS scheme employs two public code setsCp

andCe, where onlyCe is used to spread the seed. In the new
approach, we enhance the protection of the seed by using both code
sets. The codes inCe are only used to spread the last bit of the seed,
marking the end of the seed. We generate multiple subsets ofCp.
Each earlier bit of the seed is spread with one of these subsets,
selected based on the value and spreading code of the later bit.

A reactive jammer may attempt to infer the code used to spread
the next bit based on her current observation (i.e., the code used
for the current bit). It is critical not to give the jammer such an
opportunity. Thus, we require that each code appear in multiple
subsets ofCp. As a result, knowing the code for the current and
past bits does not give any jammer enough information to make
inference for future bits.

5.1 Generation of Subsets of Cp

To meet the requirement for the subsets ofCp, as a convenient
starting point, we choosefinite projective plane, which is a symmet-
ric Balanced Incomplete Block Design (BIBD) [8], to organize the
spreading codes inCp. It is certainly possible to use other combi-
natorial design methods to get better properties. We consider these
as possible future work, but do not investigate them in this paper.

A finite projective planehasn2 + n + 1 points, wheren is an
integer called theorderof the projective plane [8]. It hasn2+n+1
lines, withn+ 1 points on every line,n+ 1 lines passing through
every point, and every two points appearing together on exactly 1
line. It is shown in [8] that whenn is a power of a prime number,
there always exists a finite projective plane of ordern.

In this paper, we consider the points on a finite projective plane
as spreading codes inCp and lines as subsets ofCp. For a finite pro-
jective plane with ordern, we associate each point with a spread-
ing code and each line with a subset. We constructCp by selecting
n2 + n + 1 spreading codes with good auto-correlation and low
cross-correlation properties (e.g., PN codes [6]). As a result, we
also haven2 + n+ 1 subsets, where each subset hasn+ 1 codes,
each code appears inn+1 subsets, and every two codes co-exist in
exactly1 subsets. We give a unique index to each subset ofCp to
facilitate the selection of subsets during spreading and despreading.

5.2 Spreading the Seed
Figure 4(a) shows how the sender spreads the seed. We represent

b1 bls-1 bls

random index

sidls in [1,|Ce|]

Ce[sidls]S

F

Bls

idls-1

subset(idls-1, Cp)

Cp[sidls-1]S

randomly draw

Bls-1

Fid1

subset(id1, Cp)

Cp[sid1]S

randomly draw

sidls-1

B1

(a) Spreading the seed

b1 bls-1 bls

sidls

Try all

codes in Ce

to despread

D

F

Bls

idls-1

subset(idls-1, Cp)

Each code

in subset
D

Bls-1

Fid1

subset(id1, Cp)

Each code

in subset
D

sidls-1

B1

(b) Despreading the seed

Figure 4: Content-based code subset selection

each bit of the seed asbi, where1 ≤ i ≤ ls andls is the number of
bits in the seed. As mentioned earlier, the sender spreads the seed
from the end to the beginning.

For bit bls , the sender randomly chooses a code fromCe and
spreadsbls with this code to get a sequence of chipsBls . Assume
the index of the chosen code issidls , where1 ≤ sidls ≤ |Ce|.

We use a functionF to determine which subset ofCp is used
for the next (earlier) bit. FunctionF has two inputs: the index of
a code inCp or Ce, and a bit value (1 or 0). The output ofF is
the index of a subset ofCp. F can be any function that reaches the
indexes of the subsets ofCp evenly with evenly distributed inputs.
To guarantee that any subset ofCp be used forbls−1, we must have

|Ce| ≥
⌈

|Cp|

2

⌉

. For simplicity, we set|Ce| =
⌈

|Cp|

2

⌉

. Specif-

ically, for bit bi, where1 ≤ i ≤ ls − 1, the sender usessidi+1

andbi+1 as the input ofF to getidi, the index of subset for bitbi.
The sender then randomly draws a code from the subset ofCp with
indexidi to spread bitbi and get the sequence of chipsBi. Assume
that the code’s index issidi. The sender continues this process to
spread the earlier bits.

5.3 Despreading the Seed
Figure 4(b) shows how a receiver despreads the seed. The re-

ceiver continuously tries to find the end of a message in the buffer
using a sliding window method as discussed in Section 4.

In the sliding window, the receiver sequentially tries every code
in Ce to despread the lastl chips in the window. If no code in
Ce can successfully despread the lastl chips, the sliding window
shifts 1 chip to the right in the buffer. If the code with indexsidls
can successfully despread the lastl chips to get a bit valuebls , the
sliding window potentially covers a seed.

The receiver despreads the seed bit-by-bit from the end to the
beginning. After gettingbls , the receiver usessidls andbls as the
input to functionF to getidls−1, the index of the subset ofCp used
for bit bls−1. The receiver then sequentially tries each code in this
subset to despread thel chips for bitbls−1, until it finds the correct
code. Assume the index of this code issidls−1 and the decoded
bit value isbls−1. The sender then repeats this process to decode
the earlier bitsbls−2, ..., b1, and eventually reconstructs the seed
b1||b2||...||bls .

During this process, if any despreading failure occurs, the re-
ceiver gives up the current decoding process and shifts the sliding

B2B1

despread

B1

Cp

jam

(a) Real-time jammer

B1 B3B2

despread B1 jam

Cp

(b) One-bit-delay jammer

B1 B3B2 B4

despread B1

Cp

jam

(c) Two-or-more-bit-delay jammer

B2B1

jamjam

Bls

jam

Cp Cp Cp

(d) Non-despreading jammer

Figure 5: Reactive jamming with different capabilities

window by 1 chip to the right to look for the next seed candidate.
Once the receiver gets the seedb1||b2||...||bls , it uses this seed to
generate the spreading code sequence for the message body and
despreads the message body as discussed in Section 4.

5.4 Analysis
The objective of our analysis is to understand (1) the effective-

ness of content-based code subset selection in enhancing DSD-
DSSS’s anti-jamming capability, and (2) the capability of this mech-
anism against DoS attacks discussed in Section 4.4.

5.4.1 Effectiveness against Jamming Attacks
We analyze the probability of an attacker jamming the seed to

show the effectiveness of content-based code subset selection. More-
over, this scheme also increases the difficulty for a jammer to iden-
tify the right spreading code compared with a normal receiver. We
thus analyze the search space (i.e., the set of candidate spreading
codes) for both a receiver and a jammer to demonstrate the advan-
tage of a normal receiver over a jammer.

We consider jammers with four levels of computation capabili-
ties: (1) real-time, (2) one-bit-delay, (3) two-or-more-bit-delay, and
(4) non-despreading jammers. All jammers are reactive jammers
that can synchronize with the sender. The first three types of jam-
mers perform despreading and online analysis to assist jamming,
which improves the jamming probability by reducing the number of
candidate spreading codes (i.e., possible codes used by the sender).

As illustrated in Figure 5(a), a real-time jammer has intensive
computation power to finish the analysis and identify the spread-
ing code used for bit 1 (represented by chipsB1), and can use
this information to jam the immediately following bit (represented
by chipsB2). As shown in Figures 5(b) and 5(c), a one-bit-delay
jammer and a two-or-more-bit-delay jammer need additional time,
equivalent to the time for transmitting 1 bit and 2 or more bits, re-
spectively, to finish online analysis before applying the result for
jamming purposes. Thus, after learning the spreading code for bit
1, a one-bit-delay jammer and a two-or-more-bit-delay jammer can
only jam bit 3 (represented by chipsB3) and bit 4 (represented by
chipsB4) or later, respectively. These jammers may certainly per-
form the same analysis of every bit they receive and use the analysis
result to jam future bits. A non-despreading jammer simply skips
the despreading step and useCe to jam the last bit of the seed and
useCp to jam the remaining part of the seed, as Figure 5(d) shows.

In the following, we prove Lemma 1 to assist the analysis.

LEMMA 1. Givenk distinct subsets, the number of codes that
can be used to derive these subsets by applying functionF is in the
range of[k,min{2k, n2 + n+ 1}].

PROOF. Since the output of functionF is evenly distributed

Code for Bi Subsets for Bi Code for Bi+1 Subsets for Bi+1 Code for Bi+2 Subsets for Bi+2

x

1 n+1 [n+1, 2(n+1)] [(n
2
+3n+2)/2, n

2
+n+1]

x
x
x
x

x

contains F contains

x a code

a subset
x
x
x
x

x

[(n
2
+3n+2)/2, n

2
+n+1] ((n

2
+3n+2)/2, n

2
+n+1]

containsF

Figure 6: Jammers’ view of spreading codes and subsets (As-
sume the jammer just derived code x for bit bi (chips Bi))

Table 2: Search spaces
real time n2 + (ls − 1)n + (ls − 1)

1 bit delay 2(n2 + n + 1) + (ls − 4)
(n+1)(n+2)

2

q bits delay (q ≥ 2) (q + 1)(n2 + n + 1) + (ls − 2(q + 1))
(n+1)(n+2)

2

when the inputs are evenly distributed, for each subset, there are
two possible codes as inputs. For each code, there are two possible
subsets as outputs. Thus, the lower bound isk and the upper bound
ismin{2k, n2 + n+ 1}.

Real-time Jammers: If a jammer can despread each bit in real-
time (e.g., by using parallel computing devices), the jammer can
know the code for despreadingBi once the transmission ofBi is
complete. As Figure 6 shows, the jammer can then identify alln+1
subsets that contain this code. By using the inverse of functionF ,
the jammer can also identify all possible codes inCp that were used
to determine these subsets, which were also used to spreadbi+1

into Bi+1. The number of possible codes forBi+1 is in the range
of [n+1, 2(n+1)], according to Lemma 1. Thus, the jammer can
jam the transmission ofBi+1 by randomly selecting a code from
these codes (rather than fromCp). Since the last bit of the seed is
spread using codes inCe, the number of all possible codes for the
jammer is thus in the range of[n+ 1,min{2(n+ 1), |Ce|}].

In the worst case, a real-time jammer can despread all bits of the
seed except forBls and jams all bits. The jamming probability of
the first bit is at most 1

|Cp|
, the jamming probability of the last bit

is at mostPe0 = 1
n+1

, and the jamming probability ofBi (2 ≤
i ≤ ls − 1) is at mostPp0 = Pe0 = 1

n+1
. Thus, the jamming

probability of the seed is at most

Preal-time= 1−
(

1− 1
|Cp|

)

(1− Pp0)
ls−1.

By including an ECC that can tolerate 1 bit error, we can reduce
the maximum jamming probability to

Preal-time= 1−(1−Pp0)
ls−1−(ls−1)

(

1− 1
|Cp|

)

Pp0(1−Pp0)
ls−2.

It is easy to see that the total search space for a real-time jammer
throughout all bits of the seed is at least

SSreal-time= |Cp|+ (ls − 2)(n+1) = n2 + (ls − 1)n+ (ls − 1).

Non-real-time Jammers: The results for one-bit-delay, two-or-
more-bit-delay, and non-despreading jammers can be derived sim-
ilarly. Due to the space limit, we do not show the details but list
the final results for the jamming probabilities and search spaces in
Table 1 and Table 2, respectively.

Comparison of Jamming Probabilities: Figure 7 shows the
maximum jamming probabilities of the four types of jammers against
the random seed with reasonable parameters. Recall that the size of
Cp is determined by parametern (i.e.,Cp = n2+n+1). Thus, we
use parametern as thex-axis in this figure. To better see the im-
pact of ECC, we also include the maximum jamming probabilities
assuming an ECC is used in the seed to tolerate 1 bit error.

���

���

���

���

���

���

���

��	

��

���

���

�
 �� �� �� ��

��
�
�
��
�
��
	

�
�
�
��
�
�
�

��
�
�
��
�
�
�

�

�������

����������

�����������

�������������

��������

�����������������

�����������

�����������������

������������

�����������������

��������������

�����������������

Figure 7: Maximum jamming probability against seed (n =

4, 9, 25, 49, 81, 121, 169; ls = 64; |Ce| =
⌈

|Cp|

2

⌉

)

���

���

����

�����

� � �� �� �� ���
�
�
�
�
�
��
�
�

�

	
�����

�������
���

��������
���

	
�
��
	

Figure 8: Advantage of receivers over jammers (n =

4, 9, 25, 49, 81, 121, 169; ls = 64; |Ce| =
⌈

|Cp|

2

⌉

)

Figure 7 shows that the real-time jammer has the highest jam-
ming probability among all jammers. However, we would like to
point out that the real-time jammer is a strong assumption; such a
jammer may have to use special hardware (e.g., parallel computing
devices) to obtain the despreading results. As the jammer has to tol-
erate 1 or 2 bit delays, the maximum jamming probability decreases
significantly. Not surprisingly, the non-despreading jammer has the
lowest jamming probability.

Figure 7 also shows that increasingn (and thus|Cp|) can quickly
reduce the maximum jamming probability for all types of jammers.
Moreover, the application of ECC can also reduce the jamming
probability effectively, though it introduces additional computa-
tional and communication overheads. For example, with an ECC
tolerating just 1 bit error, we can reduce the real-time jammer’s
maximum jamming probability from 0.31 to 0.05 whenn = 169.
Further increasingn or the number of bit errors the ECC can tol-
erate can quickly reduce the maximum jamming probability to a
negligible level.

Comparison of Search Spaces: Now let us compare the num-
bers of candidate spreading codes that a normal receiver and a reac-
tive jammer have to consider, respectively. Such numbers represent
the computational costs they have to spend. Since a receiver buffers
the complete seed before despreading it, it can despread the last bit
of the seed first to learnsidls , and then infer the indexes of sub-
sets for previous bits of the seed. The size of total search space
for a receiver is thus(ls − 1)(n + 1) + |Ce|. To show the advan-
tage of a receiver over a jammer, we compute functionAdg =

SSj

SSr

for real-time, one-bit-delay, two-or-more-bit-delay jammers, where
SSj andSSr are the sizes of the total search space for the jammer
and the receiver, respectively. The largerAdg is, the more advan-
tage the receiver has over the jammer.

Table 1: Jamming probabilities for jammers with different jamming capabilities (|Cp| = n2 + n + 1; Ce =
⌈

|Cp|

2

⌉

; Pp0 = 1
n+1

;

Pp1 = 2
(n+1)(n+2)

; Pe1 = Pe2 = 1
|Ce|

; Pp2 > 2
(n+1)(n+2)

)

real time 1 −

(

1 − 1
|Cp|

)

(1 − 1
n+1)

ls−1

1 bit delay 1 −

(

1 − 1
|Cp|

)2
(1 − Pp1)

ls−3 (1 − Pe1))

q bits delay (q ≥ 2) 1 −

(

1 − 1
|Cp|

)q+1
(1 − Pp2)

ls−q−2(1 − Pe2)

non-despreading 1 −

(

1 − 1
|Cp|

)ls−1 (

1 − 1
|Ce|

)

real time, tolerate 1 bit error 1 − (1 − Pp0)
ls−1 − (ls − 1)

(

1 − 1
|Cp|

)

Pp0(1 − Pp0)
ls−2

1 bit delay, tolerate 1 bit error 1−

(

1 − 1
|Cp|

)2
(1− Pp1)

ls−3(1− Pe1)−
2

|Cp|

(

1 − 1
|Cp|

)

(1− Pp1)
ls−3(1− Pe1)− (ls − 3)

(

1 − 1
|Cp|

)2
Pp1(1−

Pp1)
ls−4(1 − Pe1)

q bits delay (q ≥ 2), tolerate 1
bit error

1 −

(

1 − 1
|Cp|

)q+1
(1 − Pp2)

ls−q−2 − (q + 1) 1
|Cp|

(

1 − 1
|Cp|

)q
(1 − Pp2)

ls−q−2(1 − Pe2) − (ls − q −

2)
(

1 − 1
|Cp|

)q+1
Pp2(1 − Pp2)

ls−q−3(1 − Pe2)

non-despreading, tolerate 1 bit
error

1 −

(

1 − 1
|Cp|

)ls−1
− (ls − 1) 1

Cp

(

1 − 1
|Cp|

)ls−2 (

1 − 1
|Ce|

)

BlsB1

B’lsB’1

Sender:

Attacker:

B2

B’2

Figure 9: Seed recovery in presence of bogus seed transmission

Figure 8 shows the advantage of a receiver over the jammers.
(The non-despreading jammer is not included, since she does not
despread at all.) All jammers have larger search space than the re-
ceiver, and the gap grows wider whenn increases. The real-time
jammer remains the most powerful one; she can reduce the search
space for the next bit dramatically by despreading the current bit,
and thus has the smallest search space among all jammers, which
is close to the receiver’s search space. Nevertheless, Figure 8 con-
siders the lower bound of the jammers’ search space. Moreover,
there is still observable difference between the search spaces of the
real-time jammer and the receiver. The search spaces of the one-
bit-delay and two-or-more-bit-delay jammers have almost the same
size, which are significantly larger than that of the receiver.

5.4.2 Effectiveness against DoS Attacks
As discussed in Section 4.4, a jammer can transmit bogus seeds

or even entire bogus messages. As long as the communication
channel is available to attackers, they can always inject bogus mes-
sages. Thus, in general, this is an unavoidable problem in presence
of compromised receivers. When these bogus seeds are not con-
currently transmitted and do not overlap with the sender’s normal
seed transmission, a receiver can filter them out using error detec-
tion coding and broadcast authentication (e.g., digital signature).
However, when the bogus seeds do overlap with the normal seed,
the receiver will have to consider all combinations of options for
each bit of the seed, thus suffering from serious DoS attacks.

The proposed content-based code subset selection scheme can
effectively mitigate such situations by chaining the codes used to
spread different bits of the seed. To demonstrate the effectiveness
of this approach, we show the number of candidate seeds when
the jammer synchronizes with a sender and transmits a bogus seed
(B′

1||B′
2||...||B′

ls
) to interfere with the transmission of the actual

seed (B1||B2||...||Bls), as shown in Figure 9.
Intuition: During seed recovery, a receiver will attempt to re-

cover the seed starting with bothBls andB′
ls

. The number of seed
candidates is the number of paths starting fromBls orB′

ls
and end-

ing atB1 or B′
1. In the basic DSD-DSSS, the receiver will try all

possible paths shown in Figure 9. However, the content-based code
subset selection scheme can constrain the paths between two seeds

(dashed lines) during despreading. Intuitively, the jammer does not
know which code subset is used to spread each bit of the seed at
the time of her transmission, and thus cannot select the right code,
which will be considered valid by a receiver during despreading.
If the code for thei-th bit (1 ≤ i ≤ ls) of the bogus seed is not
in the subset for thei-th bit of the good seed, the receiver will not
consider it for despreading thei-th bit of the bogus seed. As a re-
sult, the path from the good seed to the bogus one (in black dashed
lines) will not exist. Similarly, if the code fori-bit of the good seed
is not in the subset fori-th bit of the bogus seed, the receiver will
not consider it for despreading thei-th bit of the good seed. Thus,
the path from the bogus seed to the good one (in red dashed lines)
will not exist.

During the analysis, we considernon-despreading, real-time,
one-or-more-bit-delayjammers to see the best-case scenarios for
the jammers when they can benefit from knowing a part of the seed
and spreading codes. The capability of these jammers is the same
as discussed earlier during the analysis of jamming probabilities.
However, the objective of these jammers now is to trigger the re-
ceiver to have more seed candidates during despreading by inject-
ing bogus seeds. We assume these jammers can perform despread-
ing and transmitting operations at the same time, though they can
only use the despreading results of each bit for later bits.

Non-despreading Jammers: If the jammer follows the sender’s
procedure to send the seed, the probability of having a path from
from B′

i+1 to Bi (red dashed line) and the probability of having a
path from fromBi+1 to B′

i (black dashed line) are both 1
n2+n+1

,
because any pair of codes only exist in exactly one subset. Only one
among then2 + n+ 1 subsets can despread thei-th bit of both the
bogus and the good seeds. The expected number of seed candidates
is thus2(1 + 1

|Ce|
)(1 + 1

|Cp|
)ls−2 according to Theorem 4. The

proof of Theorem 4 is omitted due to the space limit.

THEOREM 4. When there is a non-despreading jammer launch-
ing the DoS attack against seed disclosure, the expected number of
seed candidates is2(1 + p1)(1 + p2)

ls−2. Among them,(1 +
p1)(1 + p2)

ls−2 paths end atB1, and(1 + p1)(1 + p2)
ls−2 paths

end atB′
1, wherep1 = 1

|Ce|
andp2 = 1

|Cp|
.

Real-time and one-or-more-bit-delay Jammers: Similar to the
analysis for non-despreading jammer, we analyze the expected num-
ber of seed candidates caused by real-time and one-or-more-bit-
delay jammers. Due to the space limit, we simply list results and
omit proofs. The expected number of seed candidates caused by
real-time jammer is smaller than2(1 + 1

|Cp|
)(1 + n

(n+1)2
)ls−2,

�

��

���

����

�����

������

� � �� �� �� ���

�
�
�
�
��
�
�
�	

�
�
�
�
�
��

�
�
�
�
��
�
�
�
��
�
��
�

�

�	�
����������

����
����

��	���	������������

Figure 10: Expected number of seed candidates for nor-
mal receiver under DoS attacks against seed disclosure (n =

4, 9, 25, 49, 81, 121, 169; ls = 64; |Ce| =
⌈

|Cp|

2

⌉

)

and that caused by one-or-more-bit-delay jammer is smaller than
(1 + 2p2)(1 + p2)E3 + (p4 + 2p2)(1 + p2)E

′
3, where

E3 = 1+ p4
λ1−λ2

· (2p5−λ2)(1−λ
ls−3
1)

1−λ1
+ p4

λ1−λ2
· (λ1−2p5)(1−λ

ls−3
2)

1−λ2
,

E′
3 = 2p5−λ2

λ1−λ2
· λls−3

1 + λ1−2p5
λ1−λ2

· λls−3
2 , p2 = 1

|Cp|
, p4 = 2

n+2
,

p5 = 2n(n+3)

(n+1)2(n+2)2
, λ1, λ2 =

1+p5±
√

(1+p5)2−4(1−p4)p5
2

.
Comparison: Figure 10 shows the expected numbers of seed

candidates caused by non-despreading, real-time, and one-bit-delay
jammers when they launch DoS attacks against seed disclosure.
The more seed candidates the receiver has, the more computational
cost the receiver has to spend receiving a message. Among three
of them, the real-time jammer has the highest impact. However,
it is still limited whenn is reasonably large. The number of seed
candidates is below10 for all jammers whenn ≥ 49. The non-
despreading jammer and the one-bit-delay jammers do not intro-
duce much overhead to the receiver. The expected number of seed
candidates by the non-despreading jammer is below 4 whenn ≥ 9.
The expected number of seed candidates by the one-bit-delay jam-
mer is below 1.5 whenn ≥ 9. Whenn = 169, the expected
number of seed candidates of non-despreading, real-time, and one-
bit-delay jammers are only 2, 2.87, and 1.01, respectively. Note that
the lines shown in Figure 10 are conservative estimates showing the
upper bound of the expected impact these jammers can introduce.

Compared with the basic DSD-DSSS scheme, in which the jam-
mer can introduce2ls seed candidates (e.g.,264 seed candidates
using the same parameters in Figure 10), the content-based code
subset selection scheme has significantly reduced the impact of the
DoS attacks against seed disclosure. Thus, it provides effective de-
fense against such DoS attacks.

6. EXPERIMENTAL EVALUATION
We have implemented a prototype of DSD-DSSS based on GNU

Radio [1] using Universal Software Radio Peripherals (USRPs)
with XCVR2450 daughter boards [12]. Our implementation in-
cludes both the basic DSD-DSSS scheme (named DSD-DSSS BA-
SIC) and the enhanced DSD-DSSS with content-based code sub-
set selection (named DSD-DSSS SUBSET). We have also imple-
mented DSSS [6] and UDSSS [15] as references in our experimen-
tal evaluation.

In our experiments, we used two USRPs with XCVR2450 daugh-
ter boards, one as the sender, and the other as the receiver. The
sender was connected to a laptop (Intel Core 2 Duo @ 2.6GHz),
while the receiver was connected to a desktop PC (Intel Pentium
4 @ 3.2GHz), both through 480 Mbps USB 2.0 links. Both the

laptop and the desktop ran Ubuntu 9.04 and GnuRadio 3.2. The
payload size in spreading/despreading module was configured to
be 256, 512, or 1024 bits. We measured the receiver’s average de-
spreading time of a message for 200 rounds. Since messages were
sent consecutively, the despreading of all messages after the first
message was automatically synchronized (i.e., knowing the start-
ing chip of each message). For DSD-DSSS, we set the seed size
as 64 bits and used SAS v9.1.3 [17] to generate BIBD subsets of
Cp. We used SHA-1 to as the pseudo-random number generator
for both DSD-DSSS and UDSSS schemes.

Figure 11(a) shows the average despreading time of a message
for DSD-DSSS BASIC, DSD-DSSS SUBSET, UDSSS, and DSSS
schemes when using different size of code set. For DSD-DSSS,

|Cp| = n2 + n + 1, |Ce| =
⌈

|Cp|

2

⌉

, wheren ∈ [2, 20]. For

UDSSS, the number of code sequences is the same as the number
of codes in|Cp|. As Figure 11(a) shows, DSSS is the most efficient
scheme because only one code sequence is used to despread mes-
sages. UDSSS is slower than DSSS since it has to check the first
code of all code sequences.

UDSSS is more efficient than DSD-DSSS because DSD-DSSS
has to check64 · |Ce| = 64 ·

⌈

|n2+n+1
2

⌉

codes for BASIC scheme

and63 · (n + 1) + |Ce| = 63 · (n + 1) +
⌈

n2+n+1
2

⌉

codes for

SUBSET scheme, while UDSSS only needs to check|Cp| = n2 +
n+ 1 codes. DSD-DSSS BASIC always has the largest number of
codes to check. DSD-DSSS SUBSET scheme has larger number of
codes to check than UDSSS whenn < 126 (i.e., |Cp| < 16003).
Whenn ≥ 126, DSD-DSSS SUBSET scheme would be even more
efficient than UDSSS. However, we cannot run the evaluation for
n ≥ 126 due to the large computational power requirement.

Figure 11(b) shows the average despreading time of a message
for different code lengths (l = 24, 32, 40, 48, 56). It is obvious
that all DSD-DSSS, UDSSS, and DSSS need more time to de-
spread messages when the code length is increased. The despread-
ing time of DSD-DSSS BASIC increases much faster than that of
other schemes due to the much larger search space of codes. DSSS
is still the most efficient scheme, and UDSSS is more efficient than
DSD-DSSS. Although UDSSS is faster than DSD-DSSS in both
Figure 11(a) and Figure 11(b), UDSSS suffers from the reactive
jamming attack [15] while DSD-DSSS does not.

7. RELATED WORK
Spread spectrum wireless communication techniques, including

DSSS and FH, have been commonly used for anti-jamming com-
munication [6]. However, as discussed earlier, traditional spread
spectrum techniques all require pre-shared secret keys, and are not
suitable for broadcast communication where there may be com-
promised or malicious receivers. We have discussed most closely
related works in the introduction, including UFH and its varia-
tions [18–20], UDSSS [14, 15], and BBC [2, 3]. We do not re-
peat them here. An idea similar to ours was also proposed in [7];
however, it is targeted at spread spectrum based pairwise commu-
nication, and does not provide the protection of seed as in our
scheme. RD-DSSS provides the anti-jamming capability by encod-
ing each bit of data using the correlation of unpredictable spreading
codes [11].

There are other related work, including approaches for detecting
jamming attacks [23], identifying insider jammers [4,5], mitigating
jamming of control channels [9, 21], jamming avoidance and eva-
sion [2,22,24], and mitigating jamming in sensor networks [10,22].
Our technique is complementary to these techniques.

0.01

0.1

1

10

0 50 100 150 200 250 300 350 400 450

T
im

e
(m

s)

Number of codes in code set (|Cp|)

BASIC (|M|=256)

BASIC (|M|=512)

BASIC (|M|=1024)

SUBSET (|M|=256)

SUBSET (|M|=512)

SUBSET (|M|=1024)

UDSSS (|M|=256)

UDSSS (|M|=512)

UDSSS (|M|=1024)

DSSS (|M|=256)

DSSS (|M|=512)

DSSS (|M=1024|)

(a) for different code set sizes (l = 32)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

16 24 32 40 48 56 64

T
im

e
(m

s)

Code length (l)

BASIC (|M|=256)

BASIC (|M|=512)

BASIC (|M|=1024)

SUBSET (|M|=256)

SUBSET (|M|=512)

SUBSET (|M|=1024)

UDSSS (|M|=256)

UDSSS (|M|=512)

UDSSS (|M|=1024)

DSSS (|M|=256)

DSSS (|M|=512)

DSSS (|M=1024|)

(b) for different code lengths (|Cp| = 111)

Figure 11: Comparison of time to despread message in DSSS, UDSSS, and DSD-DSSS

8. CONCLUSION
In this paper, we proposed DSD-DSSS, an efficient anti-jamming

broadcast communication scheme. It achieves anti-jamming capa-
bility through randomly generating the spreading code sequence
for a broadcast message through a random seed and delaying the
disclosure of the seed at the end of the message. We also devel-
oped an effective protection for the disclosure of the random seed
through content-based code subset selection. Our analysis in this
paper demonstrated that this suite of techniques can effectively de-
feat jamming attacks. Our implementation and evaluation shows
the feasibility of DSD-DSSS in real world. We measured the per-
formance of DSD-DSSS without jamming attacks due to the time
limitation. Although DSD-DSSS is slower than UDSSS without
jamming attacks, DSD-DSSS may be faster than UDSSS in pres-
ence of jammers. We will verify this in our future work.

9. REFERENCES
[1] GNU Radio - The GNU Software Radio.

http://www.gnu.org/software/gnuradio/.
[2] L. Baird, W. Bahn, and M. Collins. Jam-resistant communication

without shared secrets through the use of concurrent codes.Technical
report, US Air Force Academy, 2007.

[3] L. C. Baird, W. L. Bahn, M. D. Collins, M. C. Carlisle, and S. C.
Butler. Keyless jam resistance. InProceedings of the IEEE
Information Assurance and Security Workshop, pages 143–150, June
2007.

[4] J. Chiang and Y. Hu. Extended abstract: Cross-layer jamming
detection and mitigation in wireless broadcast networks. In
Proceedings of ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc ’07), 2007.

[5] J. Chiang and Y. Hu. Dynamic jamming mitigation for wireless
boradcast networks. InProceedings of IEEE International
Conference on Computer Communications (INFOCOM ’08), 2008.

[6] A. Goldsmith.Wireless Communications. Cambridge University
Press, August 2005.

[7] T. Jin, G. Noubir, and B. Thapa. Zero pre-shared secret key
establishment in the presence of jammers. InProcceedings of
MobiHoc ’09, May 2009.

[8] D. L. Kreher and D. Stinson.Combinatorial Algorithms: Generation,
Enumeration, and Search. CRC Press, 1999.

[9] L. Lazos, S. Liu, and M. Krunz. Mitigating control-channel jamming
attacks in multi-channel ad hoc networks. InProceedings of 2nd
ACM Conference on Wireless Networking Security (WiSec ’09),
March 2009.

[10] M. Li, I. Koutsopoulos, and R. Poovendran. Optimal jammingattacks
and network defense policies in wireless sensor networks. In
Proceedings of IEEE International Conference on Computer
Communications (INFOCOM ’07), 2007.

[11] Y. Liu, P. Ning, H. Dai, and A. Liu. Randomized differential dsss:
Jamming-resistant wireless broadcast communication. In
Proceedings of the 2010 IEEE INFOCOM, 2010.

[12] Ettus Research LLC. The USRP product family products and
daughter boards.http://www.ettus.com/products.
Accessed in August 2010.

[13] R. Poisel.Modern Communications Jamming Principles and
Techniques. Artech House Publishers, 2006.

[14] Pöpper, M. Strasser, and S.Čapkun. Anti-jamming broadcast
communication using uncoordinated spread spectrum techniques.
IEEE Journal on Selected Areas in Communications: Special Issue
on Mission Critical Networking, 2010.

[15] C. Pöpper, M. Strasser, and S.Čapkun. Jamming-resistant broadcast
communication without shared keys. InProceedings of the USENIX
Security Symposium, 2009.

[16] J. Proakis.Digital Communications. McGraw-Hill, August 2000.
[17] SAS. Business analytics and business intelligence software.

http://www.sas.com.
[18] D. Slater, P. Tague, R. Poovendran, and B. Matt. A coding-theoretic

approach for efficient message verification over insecure channels. In
Procceedings of the 2nd ACM Conference on Wireless Networking
Security (WiSec ’09), pages 151–160, March 2009.

[19] M. Strasser, C. Pöper, S.Čapkun, and M.̌Cagalj. Jamming-resistant
key establishment using uncoordinated frequency hopping. In
Proceedings of the 2008 IEEE Symposium on Security and Privacy,
pages 64–78, 2008.

[20] M. Strasser, C. Pöpper, and S.Čapkun. Efficient uncoordinated
FHSS anti-jamming communication. InProcceedings of MobiHoc
’09, May 2009.

[21] P. Tague, M. Li, and R. Poovendran. Probabilistic mitigation of
control channel jamming via random key distribution. InProceedings
of IEEE 18th International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC ’07), pages 1–5, 2007.

[22] W. Xu, W. Trappe, and Y. Zhang. Channel surfing: Defending
wireless sensor networks from jamming and interference. In
Proceedings of the 6th International Conference on Information
Processing in Sensor Networks (IPSN ’07), 2007.

[23] W. Xu, W. Trappe, Y. Zhang, and T. Wood. The feasibility of
launching and detecting jamming attacks in wireless networks. In
Proceedings of ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc ’05), 2005.

[24] W. Xu, T. Wood, W. Trappe, and Y. Zhang. Channel surfing and
spatial retreats: Defenses against wireless denial of service. In
Proceedings of the 3rd ACM Workshop on Wireless Security (WiSe
’04), 2004.

