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Abstract. As wireless mobile devices are more and more pervasive and adopted

in critical applications, it is becoming increasingly important to measure the phys-

ical proximity of these devices in a secure way. Although various techniques have

been developed to identify whether a device is close, the problem of identifying

the far proximity (i.e., a target is at least a certain distance away) has been ne-

glected by the research community. Meanwhile, verifying the far proximity is

desirable and critical to enhance the security of emerging wireless applications.

In this paper, we propose a secure far proximity identification approach that deter-

mines whether or not a remote device is far away. The key idea of the proposed

approach is to estimate the far proximity from the unforgeable “fingerprint” of

the proximity. We have validated and evaluated the effectiveness of the proposed

far proximity identification method through experiments on real measured chan-

nel data. The experiment results show that the proposed approach can detect the

far proximity with a successful rate of 0.85 for the non-Line-of-sight (NLoS) sce-

nario, and the successful rate can be further increased to 0.99 for the Line-of-sight

(LoS) scenario.

1 Introduction

As mobile platforms are more and more pervasive and adopted in critical applications,

it is becoming increasingly important to measure the physical proximity of mobile de-

vices in a secure way. For example, Implantable Medical Devices (IMDs) like pace-

makers may grant access to an external control device only when that device is close

enough [25]. As another example, contactless-payment systems (like Google Wallet),

which enable users to make payments by placing a mobile device in the close proximity

of a payment terminal, may require the mobile devices to be within several centimeters

or even millimeters of the payment terminals.

Thus, verifying the close proximity has triggered significant attention and activity

from the research community, and multiple techniques have been proposed to achieve

the efficient identification of close proximity (e.g., [5, 7, 11, 12, 16, 24, 29]), including

the well-known distance bounding protocols and their variants (e.g., [5, 24, 29]).

Although various techniques have been developed to identify whether a device is

close, the problem of identifying the far proximity (i.e., a target is at least a certain

distance away) has been neglected by the research community. Meanwhile, verifying

the far proximity is desirable and critical to enhance the security of emerging wire-

less applications. By enforcing far proximity, in addition to traditional access control
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and cryptographic approaches, we can enhance the security of various critical wireless

applications, such as satellite communication, long-haul wireless TV, radio, and alarm

broadcasting, and Marine VHF radio for rescue and communication services [2].

For example, GPS devices receive signals, presumably from satellites in space, to

determine their locations. Ideally, the GPS devices could verify that received signals

are from far-away sources, to avoid being deceived by a nearby adversary’s signals. In

cellular networks, mobile phones may at times expect to receive signals from particular

cell towers. It has been demonstrated that adversaries can set up a fake short-range cell

tower to fool nearby mobile phones [21,31]. To avoid being deceived by such a fake cell

tower, it is desirable that mobile phones can authenticate that the signals they receive

originate from a tower at an expected, further distance away.

Existing close proximity identification techniques (e.g., [7,11,16]) qualitatively de-

cide whether or not a target is nearby, but they cannot be directly extended to address

the far proximity identification problem. The qualitative decision that a target is not

nearby doesn’t quantitatively guarantee that the target is at least a certain distance away

(i.e., in the far proximity).

Distance bounding protocols (e.g., [5, 24, 29] demonstrated their success in quanti-

tatively estimating the distance between two wireless devices. However, they cannot be

directly applied to enforce far proximity identification. In distance bounding protocols,

a local device sends a challenge to a remote device, and the remote device replies with a

response that is computed as a function of the received challenge. The local device then

measures the round-trip time between sending its challenge and receiving the response,

subtracts the processing delay from the round-trip time, and uses the result to calculate

the distance between itself and the remote device. However, by delaying its response

to a challenge, a dishonest remote device can appear to be arbitrarily further from the

local device than it actually is.

In this paper, we develop a secure far proximity identification approach that can

determine whether a remote device is far away. The key idea of the proposed approach

is to estimate the proximity from the unforgeable “fingerprint” of the proximity. We

develop a technique that can extract the fingerprint of a wireless device’s proximity from

the physical-layer features of signals sent by the device. The proximity fingerprints are

closely related to the distance between the local and remote devices. They are easy to

extract but difficult to forge. We also develop a novel technique that uses the proximity

fingerprint to identify the lower bound of the distance between the local and the remote

devices.

The contributions of this paper are: (1) we develop a novel fingerprinting technique

that enables the local device to extract the fingerprint of a wireless device’s proxim-

ity from the physical-layer features of signals sent by the device; (2) we discover the

theoretical relationship between the proximity and its fingerprint, and we developed a

technique that can use such a relationship to estimate the lower bound of the distance

between the local and remote devices; and (3) we validate and evaluate the effective-

ness of the proposed far proximity identification method through experiments on the

real-world data. The experiment results show that the proposed approach can detect the

far proximity with a success rate of 0.85 for the non-Line-of-sight (NLoS) scenario, and

the success rate can be further increased to 0.99 for the Line-of-sight (LoS) scenario.



The rest of the paper is organized as follows. Section 2 describes our assumptions

and system and threat models. Section 3 presents the proposed far proximity identifica-

tion techniques. Sections 4 and 5 discuss the experimental evaluation and related work.

Section 6 concludes this paper.

2 System and threat models

To facilitate the presentation, we refer to the local device, which verifies the proximity,

as the verifier and the remote device, whose proximity is being verified, as the prover.

The verification system consists of a verifier and a prover. Both are equipped with radio

interfaces that can transmit and receive wireless signals.

The verifier aims to determine whether or not a prover is at least a certain distance

away, and it analyzes the signals emitted by the prover to achieve this goal. The ver-

ifier can work in both active or passive modes. In the active mode, the verifier sends

a message to the prover to initialize the proximity identification, and the prover coop-

erates with the verifier by sending wireless signals back to the verifier to enable the

verification. In the passive mode, instead of actively sending out signals, the verifier

monitors the wireless channel to capture the prover’s signal. Once the prover’s signals

are captured, the verifier can identify the prover’s proximity.

We assume that the prover is untrusted. The prover may provide the verifier with

fake messages and wrong configuration information regarding its hardware and soft-

ware settings, such as device type, signal processing delay, and protocols in use. The

prover may intentionally delay its replies to the verifier’s messages or send bogus

replies at any time to mislead the verifier. However, we assume that the verifier can

receive wireless signals sent by the prover. We assume that there are no metal shields

on the straight line between the verifier and the prover to block wireless signals from

the prover.

3 Far Proximity Verification

A simple and naive method to identify whether a prover is far away is to examine the

received signal strength (RSS). A signal decays as it propagates in the air. Thus, it

seems that strong RSS indicates a short signal propagation length and a close transmit-

ter, whereas weak RSS strength implies a far-away transmitter. However, a dishonest

prover can increase or decrease its transmit power to pretend to be close to, or far from,

the verifier. The root reason for the failure of the naive method is that RSS can be eas-

ily forged. In this paper, we discover unforgeable and unclonable fingerprints of the

proximity and propose techniques that can identify the far proximity based on these

fingerprints.

3.1 Proximity Fingerprints

Because of the multipath effect [9], a signal sent by the prover generally propagates

to the verifier in the air along multiple paths due to reflection, diffraction, and scat-

tering. Each path has an effect (e.g., distortion and attenuation) on the signal traveling



on it [23]. A channel impulse response characterizes the overall effects imposed by the

multipath propagation, and it reflects the physical feature of a wireless link [9]. Because

it is difficult to change the physical feature, channel impulse responses have been used

as “link signatures” to uniquely identify the wireless link between a wireless transmit-

ter and a receiver [6, 23, 33].

Figure 1 (a) shows a simple example of multipath propagation. The signal sent by

the prover is reflected by an obstacle (i.e., a building), and thus it travels along Path 1

(the direct path from the prover to the verifier), and Path 2 (the reflection path). The sig-

nal copy that travels along one path is usually referred to as a multipath component [9].

Let r1 and r2 denote the multipath components that travel along Path 1 and Path 2 re-

spectively. Figure 1 (b) is an example of the corresponding channel impulse response,

which shows that r1 arrives at the verifier first and the peak of the signal amplitude of

r1 is Ar1, and r2 arrives after r1, and its peak is Ar2.

Intuitively, if the prover increases (decreases) the transmit power, both Ar1 and Ar2

will increase (decrease), but the prover cannot adjust its transmit power such that it

arbitrarily manipulates only one of Ar1 and Ar2, because it is difficult for the prover

to identify and modify the physical paths over which multipath components propa-

gate [23]. On the other hand, the length of the signal propagation path is closely related

to the amplitude of the received signal. A far-away prover results in weaker Ar1 and

Ar2 than a close prover. Based on this intuition, we give the definition of proximity

fingerprint below.
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Fig. 1. An example of the multipath effect.

Definition 1 (Proximity Fingerprint) Let Ar1 and Ar2 be the amplitudes of the first and

the second received multipath components, respectively. The proximity fingerprint f is

the ratio of Ar1 to Ar2, i.e., f = Ar1

Ar2
.

Key Features of Proximity Fingerprints: It appears that an attacker (i.e., a dishon-

est prover or a third-party adversary against benign provers) could affect the proximity

fingerprint by intentionally placing a reflector nearby the prover to generate a fake path,

in addition to the direct signal path from the prover to the verifier.

However, at the verifier’s view, the direct and fake paths are still one unresolvable

path if the difference between the arrival times of the signals traveling on both paths

is much smaller than the symbol duration, which is the transmission time of a wireless

physical-layer unit [9]. To be successful, an attacker has to place the reflector far enough



away from the prover (i.e., δc meters, where δ is the symbol duration and c is the speed

of light [9]), such that the difference between the two path arrival times is resolvable at

the verifier. More crucially, at this distance the attacker must make sure that the prover’s

signal can exactly hit his reflector and be bounced back to the target verifier. However, it

is quite uncertain for the prover’s signal to be delivered to the reflector, then reflected by

the reflector to the verifier due to the random scattering effect caused by long distance

propagation [9].

For example, GPS satellites have a typical symbol duration of 0.01 second [1]. It

is impractical for the satellite’s signal to exactly hit a reflector that is 3,000,000 meters

away, and moreover be reflected by the reflector to hit a target GPS navigation device

on earth.

To summarize, proximity fingerprints are caused by wireless reflections somewhere,

which the verifier does not need to know and identify. The verifier can easily extract Ar1

and Ar2 from the channel impulse response and compute the proximity fingerprint as

Ar1/Ar2. Note that estimating the channel impulse responses is a must-have function

for most modern wireless systems [9, 20]. But in order for the attacker to be success-

fully, the attacker has to know (1) how to pinpoint a far-away place to put a reflector or

an active wireless device, and (2) exactly where to direct the reflector to shoot a needle

in a haystack. Thus, significant practical hurdles exist for attacking proximity finger-

prints. In this way, verifiers can easily extract proximity fingerprints, but it is difficult

for attackers to forge or manipulate a specific fingerprint.

The attacker may also launch active attacks to undermine the verification of prox-

imity fingerprints. In later section (3.4), we will discuss these active attacks and the

corresponding countermeasures.

Impact of Directional Antennas: When directional antennas are used, the multi-

path effect may be reduced. However, directional antennas cannot provide perfect laser-

like radio signals. For example, the beamwidth of a 3-element Yagi Antenna, the most

common type of directional antenna, is 90 degrees in the vertical plane and 54 degrees in

the horizontal plane [14]. Thus, it is not possible to completely eliminate the multipath

effect, and accordingly the multipath propagation has been also considered in designing

wireless communication systems equipped with directional antennas (e.g., [28,32]). The

proximity fingerprint can be calculated based on a very limited number of paths (i.e.,

two paths), and thus it is compatible to wireless systems with directional antennas in

use.

3.2 Far Proximity Identification Using Proximity Fingerprints

Based on the study of proximity fingerprint, we now reveal the relationship between

the proximity fingerprint and the actual proximity, and we propose far proximity iden-

tification techniques that can provide fine granularity and lower bounds on proximity

(i.e., the prover is at least a certain distance away from the verifier) using the proximity

fingerprint

Far Proximity Identification To calculate the proximity of the prover, we first model

the fingerprint of the proximity. We consider signal propagation in two typical wireless

environments, i.e., the outdoor and the indoor environments.



Outdoor signal propagation: One of the most common models for outdoor signal

propagation in urban, suburban, and rural areas is the Okumura Model [9]. According to

the Okumura model, the signal path loss in decibels (dB) in urban areas can be modeled

as

L(dB) = 69.55 + 26.16 log10(fc)− 13.82 log10(hte)

− a(hre, fc) + (44.9− 6.55 log10(hte)) log10(d),

where d is the length of the path along which the signal propagates from the transmitter

to the receiver, fc is the central frequency, hte and hre are the transmitter’s and the

receiver’s antenna heights respectively, and a(hre, fc) is a correction factor computed

using hre and fc [9]. Based on the Okumura Model, we give Lemma 1

Lemma 1. The proximity fingerprint in the outdoor environment is

√

(d2

d1
)

γ
10 , where

d1 and d2 are the lengths of the paths along which the first and the second received

multipath components travel respectively, γ = 44.9 − 6.55 log10(hte), and hte is the

transmitter’s antenna height.

Proof: The received signal power Pr can be represented as Pr(dB) = Pt(dB) - L (dB),

where Pt is the transmit power. To facilitate the calculation, we change the unit of

Pr from dB to watt (W). Thus, Pr(W) = 10
1
10 (Pt(dB)−L(dB)) = Pt(W)

L(W) , and L(W) =

10
1
10L(dB) = 10

1
10 (β+γ log10(d)), where β = 69.55+26.16 log10(fc)−13.82 log10(hte)−

a(hre, fc) and γ = 44.9− 6.55 log10(hte). The amplitude of a signal is the square root

of the received signal power. Accordingly, Ar1 =
√

Pr1(W) =
√

Pt(W)

10
1
10

(β+γ log10(d1))

and Ar2 =
√

Pr2(W) =
√

Pt(W)

10
1
10

(β+γ log10(d2))
, where d1 and d2 are the lengths of the

paths along which the first and the second received multipath components travel re-

spectively. Note that both multipath components have the same values for γ and β,

because they are from the same signal source (i.e., the prover) and exhibit the same

frequency fc. Thus, the proximity fingerprint f can be written as f = Ar1

Ar2
=

√

(d2

d1
)

γ
10 .

According to the Okumura Model, the signal path loss models in suburban and ru-

ral areas are Lsuburban(dB) = L(dB) − 2[log10(fc/28)]
2 − 5.4 and Lrural(dB) =

L(dB) − 4.78[log10(fc)]
2 + 18.33 log10(fc) −K , respectively, where K ranges from

35.94 (countryside) to 40.94 (desert). By using the same analysis, we can obtain similar

result that f in the suburban and rural areas is
√

(d2

d1
)

γ
10 . �

Indoor signal propagation: The path loss in the indoor environment can be usually

represented by the ITU Indoor Propagation Model [20] as shown below

L(dB) = 20 log fc + λ log d+ Pf (Nf ),

where λ is the empirical path loss at the same floor, Nf denote the number of floors

between the transmitter and receiver, and Pf (Nf ) denotes the floor penetration loss.

Based on the ITU indoor model, we give Lemma 2

Lemma 2. The proximity fingerprint in the indoor environment is

√

(d2

d1
)

λ
10 , where d1

and d2 are the lengths of the paths along which the first and the second received multi-

path components travel respectively, and λ is the empirical floor penetration loss factor.



Proof: As discussed earlier, the received signal power Pr can be represented as Pr(dB)

= Pt(dB) - L (dB). By converting the unit of Pr from dB to W, we can obtain Pr(W) =
Pt(W)
L(W) = Pt(W)

10
1
10

(20 log fc+λ log d+Pf (Nf ))
. The proximity fingerprint, the ratio of Ar1 to Ar2,

can be written as f =

√
Pr1(W)√
Pr2(W)

=
√

(d2

d1
)

λ
10 �

Far proximity identification: Assume there are no large metallic obstacles that can

significantly block the signal propagation between the verifier and the prover. The path

that the first received multipath component usually travels along (i.e., Path 1) is roughly

straight between the verifier and the prover due to penetration and diffraction-around-

obstacles features of wireless signals [9]. Thus, d1 approximately equals to the distance

between the verifier and the prover. The lower bound of d1 is given in Lemma 3.

Lemma 3. Let d be the distance between the prover and the verifier. We have d ≥
c

B(f
2
α −1)

, where c is the speed of light,B is the bandwidth of the communication system,

α is the path loss exponent, and f is the proximity fingerprint.

Proof: Let t denote the time at which the prover’s signal starts to propagate to the

verifier. Let t1 and t2 denote the arrival times of the first and the second received mul-

tipath components, respectively. Therefore, d1 = (t1 − t)c and d2 = (t2 − t)c =
(t1 − t)c + (t2 − t1)c = d1 + ∆c, where ∆ = t2 − t1. From Lemmas 1 and 2, we

know that for both the outdoor and indoor environments, the proximity fingerprint f

can be generalized by the same expression f =
√

(d2

d1
)α, where α equals to γ

10 and λ
10

for the outdoor and indoor propagation respectively. The first received multipath com-

ponent travels along the straight line between the verifier and the prover. Hence, the

distance d between the verifier and the prover is equal to d1. According to [9], for re-

solvable multiple path components, ∆ ≥ 1
B

, where B is the bandwidth of the wireless

communication system. Thus, f =
√

(d2

d
)α =

√

(d+∆c
d

)α ≥
√

(
d+ c

B

d
)α and we have

d ≥ c

B(f
2
α −1)

. �

Choosing α: For the outdoor signal propagation, according to the Okumura model,

γ = 44.9− 6.55 log10(hte), where hte is the height of the transmitter’s antenna. If the

verifier has specific types of targets, for example, the verifier aims to verify the prox-

imity of a satellite, a cellular base station, or a TV tower, then the verifier can directly

compute γ by looking up the typical values of hte from the corresponding wireless

device handbooks. Alternatively, the verifier can also get an estimate of γ by using the

typical transmitter antenna height in the outdoor environment (e.g., the typical transmit-

ter antenna height ranges between 1 to 200 meters [20], and thus γ approximately lies

between 44.9 and 29.83). After obtaining γ, the verifier can compute α = γ
10 . For the

indoor signal propagation, α = λ
10 , where λ is the indoor path loss factor that doesn’t

rely on the antenna height and it can be obtained through empirical experiments.

Note that the path loss exponent α for both outdoors and indoors can be actually

regarded as an attenuation factor that reflects the attenuation caused by the propaga-

tion path. Previous studies have performed extensive empirical experiments to measure

typical values of such an attenuation factor in different wireless environments [9]. For

example, the attenuation factor is 2.0 for vacuum free space, 2.7–3.5 for urban areas,

3.0–5.0 for suburban areas, and 1.6–1.8 for indoors [9]. In the following discussion,



without loss of generality, we use these typical empirical values of the attenuation fac-

tor as the example α. Nevertheless, the verifier can obtain α empirically using existing

readily-available approaches (e.g., [3, 19]), and a real-measured attenuation factor can

help to improve the accuracy of the proximity lower bound estimation.
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Experimental Examples Figure 2 shows an example of a real-measured channel im-

pulse response obtained from the CRAWDAD data set [27], which contains channel

impulse responses collected in an indoor environment with obstacles (e.g., cubicle of-

fices and furniture) and scatters (e.g., windows and doors). The channel impulse re-

sponse was measured when the distance between the transmitter and the receiver is

4.09 meters. From Figure 2, we can see that each received multipath component leads

to a triangle in shape with a peak [23]. The second multipath component arrives at the

receiver about 75 nanoseconds after the arrival of the first one. The proximity finger-

print is 5.6499. The channel impulse response was measured indoors, and thus α ranges

between 1.6 and 1.8.

We use Lemma 3 to estimate the lower bound of the proximity of the transmitter,

and Figure 3 shows the result. We can observe that the estimated lower bound increases

as α increases. However, when α reaches the maximum value (i.e., 1.8) of the indoor

environment, the real distance is still bounded by (i.e., greater than) the estimated lower

bound. Specifically, when α = 1.8, the lower bound of the proximity is 3.84 meters.

This means the transmitter should be at least 3.84 meters away from the receiver. The

actual distance between the transmitter and the receiver is 4.09 meters, which is slightly

greater than the lower bound 3.84 meters.

Note that long-haul communications may desire a much relaxed tightness of the

proximity lower bound. For example, GPS satellites running on the Low Earth Orbit

have an altitude of approximately 2,000,000 meters (1,200 miles). With a proximity

lower bound of 1,000,000 meters (i.e., the bound is less than the actual proximity by

50%), it would be possible to prevent most attackers from impersonating the satellites,



because it is usually very difficult for the attacker to achieve such a long transmission

range.

3.3 System Design

In what follows, we show how the theoretical result of Lemma 3 can be used in a

practical communication system to achieve the far proximity identification.

The verifier’s objective is to find out the proximity lower bound of the prover, i.e.,

to verify that the prover is at least a certain distance away. According to Lemma 3, the

proximity lower bound is computed by c

B(f
2
α −1)

. Thus, the verifier can simply compute

this bound with the knowledge of the speed of light c, the system bandwidth B, the

path loss exponentα, and the proximity fingerprint f . The speed of light c is a universal

physical constant and the bandwidth B is a system configuration parameter, and both

of them are known to the verifier. The path loss exponent α can be either obtained

empirically, or can be determined using the typical values. The proximity fingerprint

f is the only remaining factor that the verifier needs to decide to compute the lower

bound.

As we discussed earlier, the fingerprint f is the ratio of Ar1 to Ar2, where Ar1

and Ar2 are the amplitudes of the first and the second received multipath components.

Ar1 and Ar2 can be extracted from the channel impulse response. A wireless packet

is usually preceded by a preamble, a special data content that indicates the beginning

of an incoming packet. When the prover sends a packet to the wireless channel, the

verifier will first capture the preamble using the match filtering technique [10]; then the

verifier knows that there is an incoming packet and continues to receive the payload.

The preamble not only enables packet capture, but also enables the estimation of the

channel impulse response at the verifier.

After receiving the preamble, the verifier can use existing channel estimation tech-

niques (e.g., least-square (LS) and linear minimum mean squared error (LMMSE) es-

timators [4]) to estimate the channel impulse response from the preamble, and thereby

obtain the values of Ar1 and Ar2 and the proximity fingerprint f = Ar1/Ar2. It is

worth pointing out that using the preamble is not the only way to obtain Ar1 and Ar2.

The verifier can also use blinding estimation methods (e.g., [30]) to estimate the channel

impulse response from the entire content of the preamble and the payload. In addition,

the verifier can use hybrid methods (e.g., [13]) that combine preamble-based estimation

and blind estimation together to improve the estimation accuracy. After obtaining the

proximity fingerprint f and demodulating the payload and authentication information,

the verifier then verifies the prover’s proximity using Lemma 3.

3.4 Dealing with Jam-and-replay Attacks

To fool the verifier, the attacker may try to create a fake second path by using another

active wireless device to send signals from a different direction. In this case, the attacker

must make sure that there is no multipath effect for the signals traveling on the direct

path (i.e., the path from the prover to the verifier) and the fake path (i.e., the path from

the active wireless device to the verifier). Otherwise, the attacker cannot control and



guarantee that the fake path is exactly the second received path at the verifier side.

Eliminating the multipath effect completely is normally regarded as infeasible.

However, the attacker may alternatively launch Jam-and-replay attacks to deceive

the far proximity identification system. In the jam-and-replay attack, the attacker re-

plays an intercepted signal from the prover at the attacker’s own location, such that

the verifier is fooled into taking the attacker’s proximity as the prover’s proximity. At

the same time, the attacker jams the transmission to prevent the verifier from receiving

the original signal from the prover; hence, traditional anti-replay mechanisms such as

sequence numbers do not work.

A common method of addressing jam-and-replay attacks is to explore timestamps

(e.g., [16]). In such a method, the sender includes a timestamp in the transmitted mes-

sage, which indicates the time when a particular bit or byte called the anchor (e.g.,

the start of the message header) is transmitted over the air. Upon receiving a frame,

the receiver can use this timestamp and its local message receiving time to estimate

the message traverse time. An overly long time indicates that the message has been

forwarded by an intermediate attacker.

Timestamps-based method requires clock synchronization between the sender and

the receiver, but it generally has a low synchronization requirement in common wireless

applications. For example, in an 11 Mbps 802.11g wireless network, the transmission

of a typical 1500-byte TCP message requires 1.09 (i.e., 1500∗8
11×103 ) milliseconds. Thus,

the attacker at least doubles the transmission time of the message to 2.18 milliseconds.

As long as the verifier and the prover have coarsely synchronized clocks that differ in

the order of milliseconds, the verifier can detect jam-and-replay attacks. Note that the

synchronization requirement can be further relaxed in GPS applications. GPS satellites

have a transmission rate ranging between 20 bits/s and 100 bits/s [1]. The transmis-

sion of a standard 1500-bits GPS navigation message [1] takes 15 – 75 seconds, and

accordingly the synchronization accuracy can be reduced to the order of seconds.

In addition, to launch jam-and-replay attacks, the attacker must send jamming sig-

nals to jam the wireless transmission. Jamming attacks have been extensively studied in

the literature, and various techniques regarding jamming detection and countermeasures

have been proposed (e.g., [9, 15, 26]). The prover and the verifier can also use existing

jamming detection or anti-jamming techniques to discover the presence of jam-and-

replay attacks, or to defend against such attacks.

4 Experimental Evaluation

4.1 Experiment Setup

Wireless propagation can be either line-of-sight (LoS) or non-LoS (NLoS). In LoS sce-

narios, there exist no major or very few obstacles residing between the transmitter and

receiver, and thus LoS scenarios usually feature better signal quality. In NLoS scenar-

ios, there exist a number of major obstacles between the transmitter and receiver, and

NLoS scenarios are more complicated with higher signal distortion and sharper changes

in signal strength.

Far proximity identification often applies to long-haul wireless communications

(e.g., GPS) in outdoor environments, which are usually open and have a much stronger



feature in LoS than NLoS. Compared to outdoor environments, indoor environments

like offices, residential homes, and shops, are more complicated due to the frequent oc-

currences of walls, people, furniture, cubicles, etc. Thus, indoor environments usually

have a fairly large number of NLoS propagation paths. In our experiment, we choose

the more challenging indoor environment for our evaluation to examine the worst-case

performance of the proposed method.

We validate the proposed far proximity identification technique using the CRAW-

DAD data set [22], which contains more than 9,300 real channel impulse response mea-

surements (i.e., link signatures) in a 44-node wireless network [27]. The measurement

environment is an indoor environment with obstacles (e.g., cubicle offices and furniture)

and scatters (e.g., windows and doors). More information regarding the CRAWDAD

data set can be found in [22, 27].

We herein use error rate and tightness of the bound as metrics to evaluate the per-

formance of the proposed technique in the real world. In addition, the proximity lower

bound is computed based on a key factor, the proximity fingerprint. Thus, the prox-

imity fingerprints plays a vital role in proximity identification. To further validate the

the feasibility of using proximity fingerprints for proximity identification, we also per-

form experiments to reveal the relationship between the real distance and the proximity

fingerprints. Our evaluation metrics are summarized below.

– Error rate: The error rate is the ratio of the number of failed trials (i.e., error

happens in the trail) to the total number of trials.

– Tightness of the bound: Tightness is the normalized difference between the esti-

mated lower bound and the real distance (i.e., d−β
d

, where β is the estimated prox-

imity lower bound, and d is the real distance between the verifier and the prover).

– Proximity Fingerprints: The proximity fingerprint is the ratio of the amplitude of

the first received multipath component to that of the second one.

4.2 Experiment Results

Based on the CRAWDAD data set, we perform experiments under both LoS and NLoS

scenarios to show the error rate, tightness of the bound, and the relationship between

the proximity fingerprint and the distance.

We distinguish two types of channel impulse responses: if a LoS path exists and

there are no obstacles between the transmitter and the receiver, we mark the corre-

sponding channel impulse responses as LoS channel impulse responses. Otherwise, we

mark them as NLoS channel impulse responses. Thus, we obtain two sets of data. The

first set is formed by all LoS channel impulse responses, and the second one is formed

by all NLoS channel impulse responses. We perform our experiments using both sets.

Error Rate Error rate vs. pathloss: To obtain the error rate, we experiment as follows.

Let NLoS denote the number of channel impulse responses in the LoS data set. For

each channel impulse response in the data set, we compute the proximity fingerprint

and the corresponding proximity lower bound using Lemma 3. We also compute the

real distance between the transmitter and the receiver based on their coordinates. If the



lower bound is less than the real distance, we mark the trial as successful. Otherwise,

we mark the trial as failed. Accordingly, the error rate is calculated as
Nf

NLoS
, where Nf

is the number of failed trails and NLoS is the total number of trials. We perform the

experiment again using the NLoS data set and obtain the corresponding error rate for

the NLoS scenario.
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Fig. 5. Error rate as a function of the distance

threshold dthreshold in the LoS scenario

The channel impulse responses are collected from an indoor environment, and the

corresponding pathloss exponent α empirically ranges between 1.6 and 1.8. Thus, we

perform our experiment for different values of α in this range. Figure 4 plots the error

rate as a function of α. The pathloss exponent α reflects how a signal is distorted and

attenuated during its propagation, and a large α can result in higher signal distortion and

attenuation. Accordingly, from Figure 4 we can observe that the error rate increases as

α increases. However, when α reaches the maximum value for indoor environments,

the achieved error rate in the LoS scenario is as low as 0.075. For the minimum α of

1.6, the proposed approach has a reduced error rate of 0.05.

For the NLoS scenario, we can still achieve an error rate between 0.17 and 0.22.

Note that NLoS scenarios are the worst-case scenarios. Far proximity identification

is typically used in outdoor environments, which have the stronger LoS feature. As

shown in Figure 4, the error rate of LoS scenarios is much lower than that of the NLoS

scenarios.

Error rate vs. distance: We then perform experiments to examine how the real

distance affects the error rate. For each channel impulse response in the LoS data set,

we compute the distance between the corresponding transmitter and the receiver. Let

dmax and dmin denote the maximum and minimum distance among all computed dis-

tances. We calculate the error rate using the set formed by channel impulse responses

whose corresponding distance are larger than a threshold value dthreshold. We start from

dthreshold = dmin and increase dthreshold each time until dthreshold reaches dmax. We

perform the experiments again using the NLoS set.

Figure 5 shows the error rate as a a function of dthreshold in the LoS scenario.

The error rate decreases as dthreshold increases. The obvious reason is that a larger



dthreshold indicates a longer distance between the transmitter and the receiver, and thus

a higher chance that the estimated proximity lower bound is less than the distance.

When dthreshold approaches the maximum distance between the sender and the re-

ceiver, the corresponding error rate is 0.01. When dthreshold approaches the minimum

distance, the error rate slightly increases but it is still a small rate that ranges between

0.05 and 0.07 for different α.

Figure 6 plots the error rate of the NLoS scenario for α = 1.80, which results the

worst error rate as compared to other values of α. Contrary to the LoS scenario, the error

rate of the NLoS scenario increases as dthreshold increases. That’s because in the NLoS

scenario a longer distance between the transmitter and the receiver indicates a higher

chance that there are more obstacles, and thus a reduced proximity detection accuracy.

The “worst worst case” happens when dthreshold approaches the maximum distance

dmax for the worst case NLoS scenario. However, as we can observe from Figure 6,

the achieved error rate of the “worst worst case” is about 0.25. This means that we can

successfully obtain the proximity lower bound for a majority number (75%) of verifiers.

As dthreshold decreases, the error rate decreases quickly. When dthreshold approaches

the minimum distance, the achieved error rate is about 0.15. Again, the experiment is

performed in an indoor environment (e.g., WiFi and Bluetooth), which has a short signal

propagation distance. Outdoor wireless applications (e.g., space communications and

TV broadcasting) usually have the stronger LoS feature, and therefore can substantially

benefit from the proposed method in terms of significantly reducing the error rate.
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Tightness of the proximity bound Our second evaluation metric is the tightness of the

bound. To evaluate the tightness, we perform the following experiments using LoS and

NLoS data sets. In all experiments, the pathloss exponent α is set to the minimum and

maximum values of 1.6 and 1.8. For each channel impulse response in the LoS data set,

we compute the distance between the corresponding transmitter and the receiver and the

proximity lower bound. Based on the bound and the actual distance, we can calculate the

tightness of the bound. We then sort all the tightness values and compute the empirical



cumulative distribution function (CDF) for them. We perform the experiment again

using NLoS data set and obtain the CDFs of the NLoS tightness values.

Figure 7 shows the CDF curves of the tightness computed using channel impulse

responses collected in LoS and NLoS scenarios. For the LoS scenario with α = 1.8, we

can observe that 95% of the tightness values are less than 0.2. The indoor environment

typically features a short propagation path, and thus a 0.2 tightness indicates a small

absolute difference in distance. For example, if the distance between the transmitter

and receiver is 5 meters, the achieved tightness can be around 1 meter. In particular, the

maximum distance dmax between the transmitter and the receiver is about 11 meters,

and the corresponding proximity bound is 9.56 meters, which is very close to the actual

distance.

For the NLoS scenario with α = 1.8, we can observe from Figure 7 that 90% of the

tightness values are less than 0.3. Compared to the LoS Scenario, the NLoS scenario has

a reduced performance due to the existence of obstacles. Again, the experiment is con-

ducted based on short-range communications, and a 0.3 tightness still suggests a small

absolute difference in distance. When α decreases to 1.6, the achieved tightness in-

creases. That’s because the corresponding estimated proximity lower bound decreases,

and a decreased bound grows the difference between the bound and the real distance,

and thus augments the tightness. However, for α = 1.6, we can still observe that a

great majority of the tightness values are fairly small, e.g., 95% and 80% of the tight-

ness values are less than 0.25 and 0.3 in the LoS and the NLoS (worst-case) scenarios

respectively. As we have discussed, such tightness of the bound is usually sufficient

to prevent attackers from impersonating the transmitters in typical long-haul outdoor

wireless applications.

Proximity fingerprint vs. distance The proximity fingerprint is an important param-

eter in computing the proximity lower bound. According to Lemma 3, the theoretical

proximity lower bound is calculated as c

B(f
2
α −1)

. From this formula, we can easily de-

rive that as the proximity fingerprint f increases (other parameters remain the same), the

proximity lower bound decreases and vice versa. Note that the proximity lower bound

reveals the least distance between the verifier and the prover. Thus, the increase of the

proximity fingerprint f may also indicate the decrease of the real distance and vice

versa. We plot the proximity fingerprint as a function of the distance in Figure 8. We

can see that the proximity fingerprint in the NLoS scenario slightly differs from that of

the LoS scenario in magnitude due to the reflection loss. However, for both scenarios,

their proximity fingerprints exhibit the same tendency, i.e., they both decrease as the

distance increases. This observation is consistent with our theoretical result.

5 Related Work

Related work falls into the following two areas.

(a) Distance Bounding Protocols: Distance bounding protocols are a class of proto-

cols that determine an approximate distance between a local device and a remote device.

(e.g., [5, 24, 29]). Distance bounding protocols and their variants are based on the com-

mon observation that the distance between the local and the remote devices is equal to
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Fig. 8. Relationship between the distance and the proximity fingerprint.

the product of the speed of electromagnetic wave and the one-way signal propagation

time. The approximate distance is obtained from a series of wireless packets exchanged

between the local device and the remote device. Specifically, the local device sends a

challenge to the remote device, which then replies with a response that is generated

based on the challenge. The local device measures the round-trip time between send-

ing the challenge and receiving the response, subtracts the processing delay from the

round-trip time, and uses the result to compute the distance. Because the response is

generated based on the challenge, the distance bounding protocol can prevent the re-

mote device from pretending to be closer than it actually is by sending a fake response

before it receives the challenge.

However, by delaying its response to a challenge, a remote device can appear to be

arbitrarily further from the local device than it actually is. Hence, distance-bounding

protocols cannot enforce lower bounds on proximity (i.e., requirements that the remote

device be at least a certain distance from the local device). For this reason, the GPS-

device and mobile-phone examples used for motivation in Section 1 cannot be enforced

by distance-bounding protocols.

(b) Close Proximity Identification: There also exist traditional close proximity detec-

tion techniques (e.g., [8,17]) that can detect the presence of nearby objects without any

physical contact. These techniques use electromagnetic field changes to identify a close

object. A proximity sensor generates an electromagnetic field or a beam of electromag-

netic radiation (e.g., infrared). If an object moves into the field range of the sensor, a

field change can result, and thus the sensor senses the presence of the object. For ex-

ample, a sound alert is triggered when a vehicle moves into the close proximity of a

worker or an obstacle. However, traditional techniques cannot identify the proximity

of a specific object, because the proximity sensor reports all nearby objects as long as

those objects are in the field range.

Researchers later developed techniques that identify the close proximity of an in-

dividual target if the target can emit wireless signals (e.g., [7, 11, 18]). For example,

based on the observation that a strong received signal usually indicates a close trans-

mitter, Macii et al developed approaches that determine the proximity of the remote

wireless device by measuring received signal strength [18]. However, the use of signal



strength to determine proximity was found to be insecure, as a dishonest remote device

can easily pretend to be close to the local device by boosting its transmit power.

More recent efforts overcome this drawback with the assistance of special hard-

ware [7,11]. Cai et al. proposed a scheme that identifies the presence of a close wireless

device by using multiple antennas [7]. Halevi et al. proposed to use ambient sensors to

detect whether a Near-Field-Communication (NFC) device is nearby or not [11]. Al-

though those approaches can prevent attackers manipulating transmit power to deceive

the local device, they cannot be directly extended to address the far proximity identifi-

cation problem. They output a decision regarding whether a target is nearby, but such

a decision cannot guarantee that the target is at least a certain distance away. Also, the

requirement of special hardware such as multiple antennas and ambient sensors intro-

duces extra cost and may reduce their compatibility.

Liu et al. proposed a new close proximity identification approach that does not rely

on special hardware [16]. By using the wireless physical features that uniquely identify

a wireless link between a transmitter and a receiver, the proposed technique enables

the local device to distinguish between a nearby and a far-away remote device. An

attacker cannot manipulate such physical features to pretend to be close to the local

device. However, similar to all previous approaches, this approach is a decision-based,

i.e. outputs a simple “yes” or “no” to indicate whether the remote device is very close

or not. Hence, it does not provide the quantitative lower bound of the proximity, which

is the primary contribution of this paper.

6 Conclusion

In this paper, we proposed a far proximity identification approach that determines the

lower bound of the distance between the verifier and the prover. The key idea of the pro-

posed approach is to estimate the proximity lower bound from the unforgeable finger-

print of the proximity. We have examined the proposed approach through experimental

evaluation using the CRAWDAD data set.
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