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ABSTRACT
Motor vehicles are widely used, quite valuable, and often
targeted for theft. Preventive measures include car alarms,
proximity control, and physical locks, which can be bypassed
if the car is left unlocked, or if the thief obtains the keys.
Reactive strategies like cameras, motion detectors, human
patrolling, and GPS tracking can monitor a vehicle, but may
not detect car thefts in a timely manner. We propose a fast
automatic driver recognition system that identifies unautho-
rized drivers while overcoming the drawbacks of previous
approaches. We factor drivers’ trips into elemental driving
events, from which we extract their driving preference fea-
tures that cannot be exactly reproduced by a thief driving
away in the stolen car. We performed real world evaluation
using the driving data collected from 31 volunteers. Exper-
iment results show we can distinguish the current driver as
the owner with 97% accuracy, while preventing imperson-
ation 91% of the time.

CCS Concepts
•Security and privacy → Authentication; Access con-
trol; Authorization; Usability in security and privacy;

Keywords
behavioral biometrics; authentication; driving behavior mod-
eling

1. INTRODUCTION
Motor vehicles are an integral part of modern society, pro-

viding for the largest portion of transportation enjoyed by
individuals in developed countries. As such, they are also
quite valuable and the target of theft. In 2012, the Federal
Bureau of Investigations reported an estimated 721,053 ve-
hicles were stolen in the United States, 73.9% of them are
automobiles, costing more than $4.3 billion. Indeed, only
11.9% of motor vehicle theft was cleared that year [1]. Los-
ing a car not only causes property loss for the car owner,
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but could also trigger lawsuits against the car owner. For
example, a legal case was reported by the media in 2009
where the owner of a stolen car was sued for the deaths of
two teenagers in a fatal hit-and-run accident [2].

In dealing with car thefts, both preventative and reactive
strategies have been used. Preventative measures like car
alarms, proximity control, and physical locking devices in-
tend to prevent access to a vehicle by unauthorized users.
Typical preventative methods can alert passers-by or the car
owner to a break-in, prevent ignition if the owner’s key fob
is not close to the vehicle, or deter the theft by adding extra
facilities like wheel locks. However, these methods can be
bypassed if circumstances or human error result in the car
being left unlocked, or the car keys are obtained by the thief.
Moreover, preventative methods are entirely ineffectual once
the car is stolen.

Reactive strategies monitor a vehicle or item of interest
but do not interact directly in its security. For example,
camera feeds must be continuously observed by humans to
detect theft, which is impractical for private security, so they
are mostly reviewed after the theft is discovered to identify
the thief. It is normally infeasible for security guards in
apartment complexes, gated communities, or college or busi-
ness campuses to survey the entire grounds at once or recog-
nize a driver as having unauthorized access to one of many
vehicles there. Other monitoring concepts such as motion
sensors can suffer high false alarm rates for vehicles parked
outside amidst high human traffic. Finally, GPS-based car
services such as OnStar [3] or LoJack [4] may be used to
track a vehicle but again require the knowledge that it is
stolen. These assorted weaknesses of reactive strategies can
result in thefts that go unnoticed for hours. For example,
cars parked in neighborhoods at night may not be identified
as stolen until the next morning. Allowing the thief con-
trol of a vehicle for a long time may significantly reduce the
chance of recovering it due to an increase in the risk of the
car being involved in a crime or disassembled in chop shops.

The aforementioned approaches have the common under-
lying limitation of reliance on the infallibility of the user
in handling the vehicle’s security (never leaving the car un-
locked and unattended, for example) and the timely discov-
ery of its potential theft. If both of these dependencies are
violated, these measures are completely defeated. In fact,
the United States National Highway Traffic Safety Admin-
istration reports “40-50% of vehicle theft is due to driver
error” [5]. The ideal design of a security mechanism must
forgo assuming these impossibilities and instead detect and
notify the owner of the car theft as early as possible.



An intuitive way to achieve this goal is to enforce pass-
words in car systems, with incorrect password inputs trig-
gering an alert to the car owner. However, this strategy has
its own drawbacks. First, the dashboards and control panels
of all existing car models are located in the front of a car.
It is therefore easy to carry out shoulder surfing attacks
where passengers may purposefully or inadvertently catch
the password typed by the driver. Secondly, as indicated
in [6], passwords are susceptible to smudge attacks, wherein
the attacker may put together the oil residue of recent finger
smudges left on the touch screen to infer the password. A
third issue is that passwords can reduce the system’s usabil-
ity, because the car owner has to memorize a password and
change it periodically to maintain security. Then, whenever
the user needs to drive the car, he has to provide a correct
password, which, because inconvenient, can motivate a user
to disable the password function.

In contrast, we propose an automatic driver recognition
system that does not require any interaction between the
user and the car after the initial setup. Our basic idea is
to utilize driving behavior, which cannot be precisely repro-
duced by a thief driving away in the stolen car. This pre-
cludes the necessity for human discovery of theft, instead
monitoring for unauthorized use continually. Furthermore,
authorization is passive, so a user is not required to perform
any additional, potentially annoying action upon car entry
before every drive. This is important due to the propensity
of users to brush aside new security measures which require
additional effort.

We identified two guiding principles upon which we built
our system. First, we should observe the existence of per-
sonal and quantifiable driving preferences. But more im-
portantly, drivers have varying amounts of control over how
much of their own driving preferences they can apply to each
of the several driving events involved with any use of a car.
Secondly, drivers behave differently when traveling at differ-
ent magnitudes of speed. These principles will be explained
in further detail later, as we evaluate the efficacy of poten-
tial behavioral features, which said principles inspired. We
use the resulting effective features to classify between users,
testing periodically over the beginning of each drive until a
prediction is made authorizing or un-authorizing the driver.
Unobservable, efficient, and easily applied to existing vehi-
cles, this system can identify whether or not the driver of a
car is its owner, so that the owner may be quickly alerted
to a theft.

We performed real world evaluation using the driving data
collected from 31 volunteers. Our experiment results show
that the proposed system is suitable for driver identification
and thereby authentication. It is capable of self-identification,
that is, successfully distinguishing that the current driver is
the car owner, with 97% accuracy, while also preventing
impersonation 91% of the time. We show the effects of a
varying training dataset size, finding that at minimum 25
minutes of city driving time is necessary in training to pro-
vide desirable accuracy in driver recognition. Likewise, the
required testing time is demonstrated to be within 25 min-
utes of city driving.

This paper has the following contributions: (1) we propose
an automatic driver recognition system for the fast detection
of car thefts; (2) we identify the effective features that reflect
the unique driving preferences of a driver; (3) we propose an
online testing algorithm that accepts input data as it is col-

lected continuously and outputs a decision quickly; and (4)
we implement the proposed system and evaluate the perfor-
mance on a real-world data set collected from 31 volunteer
drivers.

2. RELATED WORK
Related work falls in the following areas.

2.1 Behavioral Authentication of Mobile De-
vices

The system proposed herein pertains to the field of behav-
ioral biometrics, inspired by similar concepts applied to mo-
bile device security to identify devices as stolen before their
owners notice their absence. Integrating physiological bio-
metric sensing technology into phones is expensive and con-
sumes space - both important optimization factors - without
providing functionality improvements the typical user would
enjoy or wish to pay for, when compared with mobile GPUs
enabling more interesting video games. Furthermore, the
physical tests required to pass biometric scans can provide
good accuracy while being inconvenient and potentially still
spoofed. For example, iris scans can be very accurate [7] but
require good lighting and can even be spoofed by a high qual-
ity picture [8]. Meanwhile, fingerprint scanners are popular
and generally effective [9], but the Apple iPhone 5S finger-
print scanner has proved erratic [10], leading users to turn
off the feature. Similar trade offs and problems are encoun-
tered with applying physiological biometrics to vehicles, so
behavioral biometrics employing existing sensors and new
software is an attractive alternative for both applications.

Accordingly, Shahzad et al. distinguish several features
of swiping gestures on touch screens which allowed them to
differentiate between 50 individuals with high accuracy as a
protocol for unlocking devices [6]. With a similar method
and similar high accuracy, but different application, Li et al.
use gesture features to continuously re-authenticate through-
out usage of the device, denying further access if the gesture
behaviors change suddenly [11]. Several efforts have also
been made in recognizing phone owners using their walking
signature [12] or by their typing habits [13] as measured by
the device’s accelerometer.

2.2 Modeling Driving Behavior
For safety applications, recent research has explored the

idea of driving behavior models, with individual endeavors
focusing on particular portions of driving habits. General
human decision making at unsigned intersections has been
simulated using hidden Markov models (HMMs), to predict
vehicle movements through those intersections and any con-
flict involved [14]. Typical highway driving has been mod-
eled with probabilistic networks based on relative positions,
velocities, and accelerations of surrounding vehicles and also
some environmental variables, to inform decision making in
autonomous vehicles driving in human traffic [15]. Sathya-
narayana et al. illustrate distraction detection applications
to their work in drivers’ unique route recognition also using
HMMs built around traces of their typical maneuvers [16].

Behavior modeling and driver identification in particular
has been achieved with a 76.8% rate of correct driver selec-
tion [17], for the purpose of tailoring an intelligent trans-
portation system (ITS) to augment the user’s driving with
adaptive cruise control or lane keeping, depending on how
much the user typically needs such assistance. Identifica-
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Figure 1: System Design

tion helps here to avoid annoying the driver with too much
intervention or, by too little, allowing the driver to incur
danger. This is accomplished by performing spectral anal-
ysis of Gaussian mixture models consisting of gas pedal de-
pression statistics [17]. This research has been built upon
in expanding the application of ITSs in vehicles, as well as
work in autonomous vehicle safety, but no such driver iden-
tification schemes have been applied to authentication and
car theft detection. Moreover the system we discuss involves
additional driving features and enjoys higher accuracy.

3. ATTACK MODEL
We assume an attacker has physical access to the vehicle

and the ability to start it and drive away. This means the
attacker has bypassed any car alarms and physical imped-
iments to accessing the vehicle and has not alerted anyone
to the theft. It is then possible to relocate the car to any
location to sell, scrap, or use in a crime. Selling and scrap-
ping are similar in that they typically involve anonymizing
the car’s hardware to prevent its identity being discoverable
in the future. Cars used in crimes are often subsequently
destroyed to erase any physical evidence the perpetrators
would leave inside, leading to insurance expenditure on the
part of the owner. Our system is designed to recognize its
host vehicle has been stolen, before such events can take
place, for a much higher likelihood of retrieval. Without
requiring user input or otherwise making itself known, it
continuously authenticates the driver as the vehicle is oper-
ated. Should the driver fail authentication, the appropriate
notifications are made to inform the owner of the car’s theft.

4. DESIGN GOALS
The following factors must be in place to ensure the au-

thentication system is effective and usable.

• Persistence: Feature data should be collected and
analyzed throughout drive time, every instance the ve-
hicle is driven, to consistently protect against theft.

• Efficiency: A verdict on the legitimacy of the user
should be reached in a short period of time to ensure
recovery.

• Unobservability: Authentication should not require
conscious input from the driver nor should its opera-

tion be visible, to avoid annoying legitimate users or
alerting thieves.

• Practicality: Integration of this system should not
require extensive hardware or intensive labor so that
it may be employed cheaply and easily.

5. APPROACH
To accomplish these goals, we offer the system design de-

scribed herein, which makes use of the understanding that
driving styles are unique to each person. Social preferences,
natural talent and interests, and economic constraints all
work to mold the set of places a particular person lives,
works, and recreates, and travel amongst these locations
forms a body of driving experience unique to that person.
This, coupled with the person’s typical mental focus while
driving and specific thresholds for risk tolerance and pa-
tience, results in a large variety of driving styles from which
any specific person can be distinguished. For example, ev-
ery driver has some magnitude of acceleration they typically
employ, as well as preferences on braking speed, cornering
speed, turn signal use, and coasting. Several of these are
encompassed in acceleration (negative and positive) data
which we use to create features for analysis.

With this concept, a simple extension of our system allows
for multiple legitimate users of one particular car. That is,
instead of comparing the current driver’s behavior to that
of a singular owner, it will compare to each of the own-
ers, to identify a match with any of the authorized users.
While not tested in this paper, we can extend this further
to address singular users whose behavior may be altered due
to extenuating circumstances. Individuals may behave dif-
ferently while accompanied by certain passengers or while
experiencing affecting weather patterns. For example, a
teenager may drive more cautiously and conservatively with
parents than with friends, or an experienced driver may be-
have more cautiously during snowy weather than the sum-
mer. Of course we expect the former situation to be infre-
quent as the teenage years comprise a very small portion of
a person’s driving career, but many drivers do live in loca-
tions geographically predisposed to inclement weather. In
this case, a single user may train profiles respective to, say,
summer (normal) and winter (snow), in order to prevent ex-
cessive false alarms. In general most driving is done as a
daily routine between the person’s home, occupation, and



home again, with static passengers or usually none at all,
so for the scope of this research we focus on this scenario.
And in this scope, we prove it possible to perform driver
identification for authentication.

Our system contains Training and Testing modules and
its architecture is presented in Figure 1.

5.1 Training Phase
We must first gather some data of typical driving behav-

ior for a vehicle owner, to be ultimately compared to new
data for authentication purposes in future trips. This is the
training stage of our system, as illustrated in Figure 1, and
requires a minimum driving time to produce good accuracy
in authentication. In our experiment, we found that users
with up to two hours of driving time entertained the best
accuracy. In terms of convenience, the training data does
not need to be accumulated in one continuous drive, but
training should be accomplished in a short time frame after
installation for obvious security reasons. It should also in-
clude both city and highway driving for the most accurate
cross-section of the driver’s behavior. A specific discussion
on training time and its effects on system accuracy is pre-
sented in Section 7: Evaluation.

The training phase begins by preprocessing all the data
collected by the user. This includes removing extreme (noise-
induced) values, normalization, and isolating important in-
formation that will drive the owner’s features. Preprocess-
ing steps are detailed in Section 6 on Driving Events and
Metrics. The features are then computed into the set of
probability distributions that make up the driver’s finger-
print vector. This serves as a basis for comparison when
testing future trips.

A driver’s habits should stay relatively static, but there
may be some few cases where they change over time. This
change could be catalyzed by an accident or close call for ex-
ample, where a driver might attempt to conform to a safer
driving paradigm thereafter which might have different char-
acteristics compared to his previous behavior. A change
could also be a very slow unconscious one, where after some
time an impermissible frequency of false alarms could oc-
cur. Accordingly, the driver can reset and redo his training
to represent his current behavior.

5.2 Testing Phase
Intuitively, driver identification accuracy will benefit from

having as much available data as possible for comparison
against the fingerprint vector. We use this type of retroac-
tive method in our offline testing to determine which fea-
tures should be included in our fingerprint and test vectors.
In practice, an online driver identification system should ac-
tively process an incoming continuous data source, and wait-
ing until a trip is complete defeats the purpose. To detect an
unauthorized driver and recover a stolen car quickly, we need
to compare a test vector to the driver’s fingerprint vector as
early as an appropriate amount of data is available. Accord-
ingly we design an algorithm that accepts the input data as
it is collected continuously and outputs a decision quickly.
This is accomplished by partitioning the data stream into
blocks to be tested sequentially as they arrive. This block
size should be long enough to provide suitable accuracy but
short enough to quickly return a result. A suitable block
size can be found empirically as we show in Section 7 on
Evaluation.
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Online testing: The online testing phase for a block of
data from an unauthenticated user begins much in the same
way as the training phase. It undergoes the same preprocess-
ing, with important data selected and parsed into features
making up a test vector D. It then approaches the Pre-
dictor, wherein the following algorithm takes place (Figure
2). Let Di denote the current test vector generated by the
driver identification system. Further let F denote the fin-
gerprint vector. Upon obtaining Di, the predictor estimates
whether or not the user is legitimate by comparing F with

an augment test vector Di

⋃(⋃
j∈{1,2,...,i−1} Dj

)
, where D1,

D2,...,Di−1 are the previously collected test vectors.
Three metrics are examined after the comparison. The

first and second metrics are the similarity calculations d1
and d2 between F and the augment test vector, as measured
by our two comparison tools. In both cases, lower numbers
indicate more similarity. The third metric is the length l of
the augment test vector, i.e., the number of test vectors that
form the augment test vector. For the test vector Di, the
length of the augment test vector is i.
For these three metrics we employ six thresholds. Met-

ric d1 is compared to thresholds t1 low and t1 high, while d1
is compared to t2 low and t2 high. Threshold tboth is com-
pared with the sum of d1 and d2. Finally, threshold tl is
used to limit l. Based on these metrics and thresholds, the
prediction generates the following decisions:

• If both d1 ≤ t1 low and d2 ≤ t2 low are true, the user is
temporarily authorized.

• If one of d1 ≤ t1 low and d2 ≤ t2 low is true, and d1 +
d2 ≤ t3, the user is temporarily authorized.

• In any other case, the user’s identity remains unknown.

• If either d1 > t1 high or d2 > t2 high at any time, then
the user is unauthorized.

If l < tl at this time, and the current driver has been tem-
porarily authorized or remains unknown, then the predictor
continues authentication. The next block of input data is
processed when it arrives to generate the new test vector
Di+1, and the predictor repeats this process to continue au-

thentication, i.e., comparing F to Di+1

⋃(⋃
j∈{1,2,...,i} Dj

)
.

If l ≥ tl, and the above rules resulted in authorization,
the user is identified as the owner. Otherwise if the user



remains unknown, authorization fails and an alert is made.
Appropriate follow-up actions may be taken by the legiti-
mate user.

Comparison tools: We use the well-known Kolmogorov-
Smirnov (K-S) statistical test [18] as well as the total vari-
ation distance [19] to compare the fingerprint and the aug-
ment test vectors. Specifically, both vectors are made up of
empirical probability distributions in the form of frequency
data stemming from the collected acceleration data. First,
each distribution from the augment test vector undergoes
the K-S test with the respective distribution from the fin-
gerprint vector, returning a conclusion as to whether or not
the two portions of data are from the same distribution.
Second, the distance between the distributions is measured,
which provides an additional metric for their variation. The
difference between the vectors is finally calculated using the
total number of features (distributions) in the test vector
which fail the K-S test as well as the sum of their variations.
The specifics of this calculation and usage of both tests is
covered in 7.3.

5.3 Testing Logistics
We gathered our testing data on a few mobile devices with

the Android operating system, using as previously stated the
acceleration information of the vehicle, to generate our fea-
tures. Using this type of device and these features we were
able to identify users based on their driving data with good
accuracy, as detailed in Section 7 on Evaluation. One strat-
egy for obtaining a GPS location of one’s vehicle is suggested
in an article [20] on the Internet site “wikiHow” and involves
purchasing a smart phone with an elementary cell plan, and
installing it unobtrusively in the car. The idea is that upon
discovering a car theft, the phone’s information can be used
to access its GPS remotely to locate the car [20]. We pro-
pose that these two concepts can be combined: install a
smart phone in the vehicle with our system implemented on
it, and have it text an alert to the owner’s personal phone
when we detect unauthorized use. This provides prompt
theft detection, owner notification, and tracking capability
for recovery by the police. Also, this requires but the most
elemental of smart phones, which are steadily decreasing in
price, so this will be just as affordable as other leading pro-
tection methods, with added benefits.

A second strategy is to implement our theft detection sys-
tem into the car’s computer. While we carried out our test-
ing by using Android devices’ accelerometer and GPS data
to create our features, so we can only comment on the ac-
curacy of this platform, we believe an implementation in
the car’s computer operating system will perform similarly
well. In fact, it will allow for more direct measurement of
the driver’s acceleration preferences by monitoring gas and
brake pedal depression statistics, so similar or greater accu-
racy is likely. We leave this implementation to future work
as we found programming in an Android device was much
more practical than in a car’s computer for this initial re-
search. However, this will very likely change in the near
future as vehicles become smarter, so we are optimistic that
our system can be applied easily to cars in the future. An
exciting indication of this opportunity is the news that vehi-
cles from Audi, Honda, General Motors, and other compa-
nies are beginning to support the Android operating system
as the car’s OS [21].

5.4 False Alarm Handling
Biometric security systems which interface directly with

the owner of the protected system have the unique advan-
tage that the annoyance of false alarms can be minimized
entirely. As our proposed system notifies its owner in the
case of an alarm, false alarms may occur without any impact
other than, say, an unnecessary text message received by the
owner. While driving, the owner should ignore text messages
regardless. This is just one possibility for an alert delivery
system; conceptually, a more appropriate alert method may
be discovered. More importantly, we provide the system
which determines an alert should be made to begin with,
and remark that any kind of alert generated by our system
is more effective than no alert at all.

We strive to maintain low false alarm rates, and the accu-
racy we achieve reflects that. We also note that some users
may desire an even more stringent and secure authentication
test. In that context, we emphasize that the chance that the
system does not identify a thief can be minimized by ma-
nipulating the false alarm vs. mis-detection rates. This is
discussed in further detail in Section 7.3 on Threshold Size.
Similarly, we may lower our test thresholds, making the tests
more stringent, and decrease the time required to identify
theft. The resulting false alarm increase, with its very small
increase in annoyance, may be worth the added protection
to some users.

5.5 Mimicry Attacks
To successfully mimic another driver, avoiding detection

by our algorithm, requires a constant attention to several
complex factors. One must regulate each distribution in the
test vector to be the same as the corresponding one in the
fingerprint vector. These distributions come from different
sources and apply at different velocity ranges. Furthermore,
the measure of ”sameness” is made according to two different
tests combined through several different rules. Each of these
factors compounds on each other, making it utterly implau-
sible to launch such attacks, even disregarding the difficulty
of accessing the data on the owner’s system to study.

6. DRIVING EVENTS AND METRICS
To illustrate the methodology used by our system to clas-

sify users, we begin by describing the collection of data which
we used to prove the concept viable, followed by the process-
ing of this data into elemental driving events.

6.1 Driving Event Types
We identified six general driving events encountered in a

typical drive: increasing speed, maintaining speed (cruis-
ing), coasting, braking, turning, and changing lanes. These
are essentially self-explanatory for the high percentage of
the developed world familiar with driving or riding in ve-
hicles. We do however note a key observation that these
events are all types of acceleration, as shown in Figure 3.
Increasing speed is achieved by depressing the gas pedal and
causing positive acceleration along the y-axis of the vehicle.
To maintain speed, the driver keeps a constant depression of
the gas pedal or uses Cruise Control, which keeps a steady
zero acceleration. Coasting involves slight negative accel-
eration from release of the gas pedal and no application of
the brakes. In contrast to coasting, braking invokes a strong
negative acceleration with the car’s brakes. Turning encoun-
ters angular acceleration as force is applied along the x-axis
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Figure 3: Forces caused by each type of acceleration.
Not shown is cruising, which is defined by a lack of
force.

of the car (perpendicular to the car’s facing direction). Fi-
nally, lane changes encounter, in comparison to full turning,
a slight angular acceleration at the beginning and end of the
movement.

With this in mind, human preferences in performing these
various events are a function of force tolerance, as well as
reasoning and sometimes necessity. For example, approach-
ing a red light with no traffic around, an individual will
brake according to comfort, perception of safety, and care
for vehicle integrity, all functions of force tolerance and rea-
son. Similarly, a driver may prefer to stop cruising and start
coasting some distance out from an impasse, such as a stop-
light or wall of traffic, to avoid wasting gas, while another
may continue at high speed until braking is obligatory. In
the event of traffic, outside influence is also a factor, caus-
ing some of these events to be more or less effective than
others for identifying personal behavior patterns. It is im-
portant, then, to select those events for which there is the
least outside influence causing variation in a driver’s behav-
ior. Those events will have the features most unique to each
person. Refer to Feature Selection in Section 7 where this
process is exhibited.

6.2 Speed Effects on Events
We also expect variations in users’ behavior at different

speeds. A mistake at high speed, for example, is more dan-
gerous than at low speed, and with this knowledge some
drivers may accept more risk at some speeds than others.
Also, environmental factors such as traffic, road conditions,
or weather could force a user to drive at a different speed
than preferred. With a single partition holding all data,
a user might appear to favor the habits from the range of
speed most often traveled in, and potentially different be-
havior from other speeds will be ignored. With multiple
partitions, the user’s behavior can be determined for each
speed range regardless of the fraction of time spent driving in
that range. We evaluate using speed ranges as sub-features
for our driving events, ultimately assembling our fingerprint
and test vectors from the data on the events for each speed
range. This reduces the impact of the aforementioned envi-
ronmental factors for a more robust system.

As an example, consider Figure 4. Here, the top plot
shows the positive acceleration distributions for two drivers,
from data measured by an accelerometer. Their difference
is visible, but small. The distributions are farthest apart at
an acceleration of roughly 1.6 m/s2, where 92% of data for
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Figure 4: Empirical Cumulative Distribution Func-
tions (ECDFs) of two users’ positive acceleration
data (top), followed by ECDFs of that data parti-
tioned by four velocity ranges (lower four charts)

Driver 1 is below this value. Compared to 82% for Driver 2,
there is a 10% difference here. The four plots below this show
the same two distributions separated by four velocity ranges
(0-20, 20-40, 40-60, and 60+ mph). The first partition looks
similar to the full data plot, but the next three show marked
differences between their respective data and the full data
plots. Their largest separations are, in order, 12%, 19%,
26%, and 28%. These large differences combined together
can form a cascade filter that helps us differentiate more
effectively between these two users who at first glance appear
somewhat alike.

6.3 Data Collection
As mentioned, the six overarching driving events are fun-

damentally different forms of acceleration. Increasing speed,
cruising, coasting, and breaking are all acceleration at vary-
ing magnitudes along the y-axis of the vehicle as illustrated
in Figure 3. From the frame of reference of the car, turning
and lane changes create force along the x-axis. For this rea-
son we chose the accelerometer hardware in mobile devices
to collect data on acceleration in each dimension. Also nec-
essary is velocity information so that the acceleration can
be partitioned according to speed ranges as just discussed,
so we included GPS hardware as well, which can provide
velocity as the time-derivative of its gathered position data.
As acceleration is the time-derivative of velocity, the GPS
data can also provide acceleration data, but along the car’s
y-axis only. Having two sources of acceleration data, we can
use each to verify the other for the sake of accuracy.

We developed an Android application on the Nexus 5 to
collect and archive driving trace data, and distributed this



among our volunteers so they could gather data while driv-
ing for a short time. This application records continuously
the global position of the device and the forces acting upon
it in each direction. GPS data was queried as frequently as
possible, which was roughly once per second; accelerometer
data was gathered at the device’s specified “normal” rate of
50 Hz. Both sets of data were recorded with their respective
timestamps to be later retrieved from the device for analysis.

6.4 Driving Event Extraction
The two sets of data aggregated from GPS and accelerom-

eter offer two sources of acceleration information. First, ac-
celeration is directly measured by the accelerometer, and
second, it can be calculated from the GPS position data.
The difference between these two sources require different
processing to produce driving events, which is detailed in
their respective sections below.

6.4.1 Acceleration Events Sensed by Accelerometer
No calculation is required to render acceleration values

from the accelerometer data, but due to variations in par-
ticipants’ positioning of the device collecting data, some nor-
malization is required. For example, we need to ensure the
average of the y-component of acceleration is close to zero,
as it should be when the beginning and ending velocities
are zero. Almost all data was collected with the device sit-
ting in the passenger seat, which in modern cars has a very
small incline when looking forward, so the y-acceleration
trace would commonly be reduced by a scalar constant so
that its average would be close to zero. Such a calibration
is acceptable, but too large of an incline spreads the force
over more than just the y-axis, so we ignore any such data
to avoid invalid comparison with properly collected data.

Noting again that the y-axis acceleration trace should av-
erage zero, positive acceleration events are identified as be-
ginning at a point whose moving average is larger than a
standard deviation more than the overall average of zero.
They continue while the acceleration remains above zero.
We discovered that some noise caused by the vibration of
the car (which was uniform amongst all users’ data) pre-
vented separation of coasting and braking, so we treated an
overall deceleration event type as the combination of the two
events. These deceleration events are thematically the same
as positive acceleration events, but start at the point whose
moving average is more than a standard deviation below the
average of zero. Following these specifications, all points
in the y-axis acceleration trace which are not identified as
positive acceleration or deceleration events represent cruis-
ing events, because speed is maintained when acceleration is
near zero. If the velocity is zero as calculated from the GPS
data, the accelerometer data is discarded to avoid including
time spent stationary at stoplights for example.

Turning and lane changes involve perpendicular force, as
mentioned, so we look to the x-axis data for their detection.
We found that lane changes could provide indiscernible x-
acceleration if the user made the change slowly, so we ig-
nored them in favor of turning events, which show forces
of similar magnitude to acceleration or deceleration events.
The same general strategy was used, to pick out left and
right turns, dependent upon positive or negative direction
of force on the x-axis. Finally, any data not involved in
turning events is discarded as it is redundant to the cruising
event data.

6.4.2 Acceleration Events Calculated from GPS Po-
sition Data

To find users’ acceleration and velocity from the GPS posi-
tion data, the distance between each point is first calculated.
This is an approximation derived from the points’ latitudes
and longitudes. With distance calculated in this manner,
velocity and acceleration are simple time derivatives of the
position data. Acceleration data is only along the y-axis
here as the distance calculation loses any direction data,
and calculating direction for use in turning acceleration is
prohibitive with the infrequency of data collection. Conse-
quently, turning and lane change events are not considered
for GPS data.

Though the overall data is accurate, at times in all users’
data there would be a delay followed by a receipt of an old
data point, now incorrectly timestamped, along with a new
one. Due to the complexity and noteworthy delay involved
with communicating with satellites, this issue would result
in some oscillatory noise. For this reason and the normally
infrequent collection of data, acceleration events are not so
nicely shaped as they are for the data acquired by the ac-
celerometer, so these events are parsed differently. Here, a
data point is considered part of a positive acceleration or a
deceleration event only if is further than a standard devia-
tion away from the average zero acceleration. This ignores
the tails of acceleration events, which do not usually appear
tapered out in this data. Coasting is again absorbed into de-
celeration events, and as before any remaining points with
nonzero velocity are classified as cruising events.

7. EVALUATION

7.1 Experiment Framework
We had 31 volunteers participate in this project. These

volunteers represent ages ranging from late teens to early
60s and included students, faculty, office workers, and self-
employed. They were given our application to run on an
Android device. The application was designed such that
at the beginning of a trip, the user would place the device
in a horizontal position facing forward, and press a button
to start data collection. No further input was required until
reaching the destination, at which point the user would press
a second button to stop data collection. All laws pertaining
to phone usage in vehicles were thereby satisfied and driving
safety upheld. These volunteers were tasked with accumu-
lating at least 30 minutes to an hour of driving data, and
some collected up to two hours.

To quantify the accuracy of our system, we examine its
rates of false alarm and mis-detection as we vary the system
parameters. We define the rate of false alarm as the fraction
of users who are not correctly identified as themselves. In
this case, the system would render an alarm indicating the
legitimate user is unauthorized. The rate of mis-detection
includes users who are incorrectly identified as other users.
This case involves no alarm raised over the current driver
being someone other than the owner. These values are our
criteria in the following sections.

7.2 Feature Selection
We are able to extract positive acceleration, deceleration,

and cruising events from both the accelerometer data and
the GPS data, as well as turning events from the accelerom-
eter data. We now show the performance of each of these



metrics in a comprehensive test of our datasets and decide
whether or not to include them in our feature vectors.

As discussed earlier, we use the K-S test to compare be-
tween two users’ distributions from a particular event and
velocity range. The test measures the distance between the
empirical distribution functions of the two distributions. If
the distances are all small, the null hypothesis that they
are from the same probability distribution is decided to be
correct. If the largest distance is greater than a threshold de-
pendent upon a specified significance level and the size of the
distributions, the null hypothesis is rejected, indicating they
are from different probability distributions. A smaller signif-
icance level results in a larger threshold value and thereby a
larger tolerance for variation in two distributions ultimately
identified as belonging to the same distribution. We find
that among our useful event types, a significance level of
0.005 allowed most users to be identified as themselves with-
out others also appearing the same. Consequently this value
is used as we exhibit the performance of each event type.

The Total Variation Distance is similar to the K-S test,
but instead of examining the largest distance between two
distributions, it takes a sum of the distances between every
point in the distributions. A smaller total variation distance
can indicate two distributions are similar, while a large dis-
tance can imply difference. We find that the K-S test is
stronger for comparing the shapes of the distributions, while
the total variation distance is stronger in comparing their
overall sizes. The two tests are combined as discussed in
Section 5.2 detailing our testing process, with a series of
thresholds we optimize later in this Evaluation section.

For the following several features, figures will be shown
to illustrate the performance of each feature in comparing
every driver to every other, for GPS and accelerometer data.
Specifically, with 31 available datasets, there are 930 trials
which involve attempting to differentiate one user from an-
other, and 31 trials where each driver should be identified
as themselves. In the Self bar, the Correct portion shows
the number of users (out of 31) correctly identified as them-
selves, while the Incorrect portion shows the number of tri-
als where users did not appear like themselves. The Correct
portion of the Other bar shows the number of trials (out of
930) where our tests correctly differentiate between differ-
ent users, while the Incorrect portion represents users who
appear similar to other users.

In short, the Incorrect component to the Self and Other
bars represent the false alarm and theft mis-detection rates,
respectively. Good features will have few mis-detections and
as few as possible false alarms, so a perfect figure would show
31 correctly authorized trials and 930 correctly denied trials.
Thresholds vary for each type of data, and are selected to
provide the best results and show the potential efficacy of
the acceleration type and source.

7.2.1 Positive Acceleration
For both the accelerometer and GPS data, positive ac-

celeration events present effective divergence between users.
Figure 5 shows the results. For the GPS, requiring all veloc-
ity ranges to have nearly equivalent distributions properly
identified all 31 users as themselves, but also allowed users
to impersonate others in 116 of 930 such comparisons. The
accelerometer data allows fewer impersonations, 32 of 930
possible, but fails to identify 17 of 31 users as themselves.
As the two sources have different strengths, including both
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Figure 5: Positive acceleration trial statistics from
GPS (left) and accelerometer (right) datasets

can potentially (and does, as shown later in this section)
produce good results.

The usefulness of these features is logical: a driver’s pre-
ferred positive acceleration is only ever limited with an upper
bound by traffic (at stoplights with long lines, for example),
so for most places and times, drivers are able to accelerate
as they please. In the case of traffic, the data used in this ex-
periment was amassed in a city consistently named among
the worst cities in the United States for traffic, so what-
ever inaccuracy traffic can impose is present in our results.
By a lower bound, positive acceleration is never limited ex-
cept in the cases of risky merging or exceptionally impatient
followers. The latter case is an out-lier, and the former in-
corporates an individual’s particular acceptance of risk into
the data which can increase rather than limit the accuracy
in discerning between users.

7.2.2 Negative Acceleration
As seen in Figure 6, deceleration events from the GPS data

prove roughly as effective as positive acceleration events.
Indeed, 30 of 31 users are correctly self-identified, and 124
of 930 possible impersonations are allowed using only this
data. In contrast, the accelerometer data does not function
well for this feature, with 176 impersonations and only half
of the possible self-identifications.
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Figure 6: Negative acceleration trial statistics from
GPS (left) and accelerometer (right) datasets



It does make sense that deceleration might be less useful
than acceleration events. Negative acceleration events have
more potential limitations on driver freedom and variation,
as they are more a function of necessity than positive accel-
eration events. Other drivers’ behavior can induce braking,
by merging or pulling out in front of the subject, or in traffic
by simply being numerous. Stoplights can change unexpect-
edly, causing attenuated available stopping time such that
drivers have to brake differently than they would otherwise.

The difference in efficacy between the two sources is at-
tributed to the more coarse-grained GPS data failing to cap-
ture brief rapid braking events caused by reactions to the
environment instead of driver preference. The accelerome-
ter includes these un-useful reactions along with the useful
information on driver preference, and suffers accordingly.

7.2.3 Cruising
Figure 7 shows the poor results of identification using

cruising data. While only one false alarm occurred with the
GPS data, 198 trials allowed impersonation to take place.
Accelerometer data was considerably worse, with 324 im-
personations and just a little more than half of the users
correctly self-identified. This is rather unsurprising, because
cruise time depends almost entirely on the driving locale.
Also, variation in speed while maintaining a mostly constant
cruising speed can depend on the car’s cruise control system
and changes in terrain as much as it might depend on a user
manually maintaining speed with measurable fluctuation.
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Figure 7: Zero acceleration (cruising) trial statistics
from GPS (left) and accelerometer (right) datasets

7.2.4 Turning
Turning data from the accelerometer produces the results

shown in Figure 8. Intuitively, drivers handle cornering ac-
cording to their force tolerance and perceived safety, as men-
tioned before. In practice, this data is not very effective. At
best, only 3 of 31 self-identification tests resulted in false
alarms, but about half of the possible 930 impersonations
were allowed. The infrequency of turning events in compar-
ison with positive or negative acceleration events likely re-
duces the usefulness of this data, and more data could result
in better performance. If we had enough data to properly
train the system on turning events, it would still however
require too much data-gathering time in testing the identity
of new users to efficiently render a decision, which is the
overarching concern.
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Figure 8: Turning trial statistics from accelerometer
dataset

7.2.5 Velocity Range Partitioning
Finally, Figure 9 illustrates the benefits afforded by split-

ting the training and testing datasets by the velocity of each
data point. At left is the best result obtainable without
the use of speed ranges, while the right chart shows the
better result from their use. While the mis-detection rate
holds static, the false alarm rate collapses from six to one,
providing more confidence in our system’s ability to cor-
rectly identify users as themselves. This equates to 97%
self-identification and 91% differentiation rate.
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Figure 9: Trial statistics not using (left) and using
(right) velocity range partitioning of driving data

The velocity ranges used here are chosen such that the
following concerns are satisfied:

• The divisions should be numerous enough to allow
for all the behavioral differences a person could make
based on speed.

• The divisions should be small enough such that the
lower bound does not “feel” significantly different than
the upper bound.

• The divisions should be few enough and sufficiently
large to accumulate adequate data for comparison in
a timely manner, so decisions can be made efficiently.



Empirical testing evinced a set of ranges most appropriate
for our experiment comprised of 0-20, 20-40, 40-60, and 60+
mph.

7.2.6 Feature Selection Summary
We found that both sources of acceleration data were use-

ful as they both had strengths and weaknesses. The data
from the accelerometer was very fine-grained, being mea-
sured fifty times per second, and was able to be parsed into
acceleration events quite well. However the magnitudes of
the forces upon the accelerometer did not show enough vari-
ation to identify unique users with high accuracy by itself.
This may be due to the device’s placement on the cushioned
passenger seat, which likely dulled the force somewhat. The
acceleration as calculated from position data, in contrast,
had more accurate magnitudes due to its direct calculation
from the location trace. GPS is accurate to within 3-7 me-
ters with 95% confidence [22], so apart from some local in-
accuracies the overall traces were highly accurate. Never-
theless those local inaccuracies were large, so the GPS data
was also insufficient for identification on its own. Finally,
previously stated as a benefit to the negative acceleration
feature, GPS data contributes its ability to often ignore re-
active (non-preferential) actions that are too brief for the
frequency of data collection.

Taking from the useful events, we have features includ-
ing (1) positive acceleration measured by the accelerometer
and (2) combined positive and negative acceleration calcu-
lated from the GPS position measurement. Both features
are finally subdivided into four velocity ranges, for a total of
eight features, ultimately resulting in 97% self-identification
and 91% differentiation rates. Our Predictor component’s
set of thresholds is set to accommodate the total number of
feature tests in its classification of drivers.

7.3 Threshold Size
The number of features required to pass authentication

has an effect on the rate at which a car owner is authorized
as well as the rate at which illegitimate users are autho-
rized. We have eight features and two tests performed on
each feature. With the data split into ten blocks, there are
thus a total of 160 feature tests, 80 for each test type. To
use both test types, we combine them according to several
rules and thresholds as discussed in Section 5.2. For the K-S
test, we have thresholds specifying the maximum number of
tests which may be failed while still resulting in authoriza-
tion. For the total variation distance, we specify the maxi-
mum variation distance to which the tests may be summed.
Lower thresholds will prevent more users from being erro-
neously authorized, but will reduce the number of rightful
owners being authorized as well. Likewise, high thresholds
can ensure all legitimate users are authorized, but several
“thieves” will also be accepted.

For this portion of the experiment, full training and test-
ing datasets are used, for the broadest applicable view of the
data. These datasets are tested sequentially block by block.
To find the optimal set of thresholds, we find the point where
the false alarm and mis-detection curves intersect in Figure
10. In this figure, we search the possible thresholds to find
the mis-detection rate associated with a specific false alarm
rate. We find an intersection with lowest total error nearest
3 false alarms, identifying all but roughly a tenth of illegiti-
mate users.
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Figure 10: Finding an optimized threshold

We also note that with a different threshold selection, we
can reduce illegitimate access to the neighborhood of 6%
with 16% false alarm rate. This boost to the false alarm
rate might be worth the added security depending on the
individual. Because alarms only notify the car owner (de-
pending on the setup), users may find this false alarm rate
unobtrusive enough to choose the very stringent and con-
sequently secure threshold set. In practice, users could be
given the option to specify their own mis-detection threshold
based on perceived risk and comfort level.

7.4 Training Data Size
The training process for a classifier benefits from an abun-

dance of data (though sometimes too much data can make a
classifier too specific and not applicable to new data). If the
application of the classifier is to prevent irretrievable vehicle
theft, the user would prefer to have this protection as soon
as possible. We examine the impact of different training
sizes here, to find out how much data collection is necessary
before a user can begin protecting the car.

As our volunteers collected differing amounts of data, we
base our training data size on the small datasets, those sup-
plied by our volunteers who drove for smaller amounts of
time. This size is broken into ten blocks to see the effects of
increasing the data size on our false alarm and mis-detection
rates for all drivers. The maximum training data allowed
here is roughly 450 seconds (450 points) worth of positive
and negative acceleration from the GPS data, and 180 sec-
onds (9000 points) of positive acceleration measured by the
accelerometer. For reference, our users accomplished this
amount in 25-45 minutes depending on how much time was
spent cruising or at stop lights. All available testing data is
used, and the threshold set used for authentication is that
arrived at in the previous section on Threshold Size. The
results are shown in Figure 11.

As expected, the best accuracy is attained with all avail-
able blocks of data included. These error rates are higher
than those we measure in other tests, because we are re-
stricted to the small dataset size. Additionally, because the
threshold set is constant, optimized for the full available
training size, the false alarms are slightly erratic before set-
tling to lower values in later blocks. Of largest impact here is
the fall of the mis-detection rate showing better theft detec-
tion with larger training data. We recommend 1.5-2 hours of
training time, because in perusing the results, we find those
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Figure 11: Effects of training dataset size on error
rates

users who provided that amount of data almost universally
were identified as themselves with the least number of failed
feature tests, and were rarely confused with other drivers
(mis-detected).

7.5 Testing Data Size
The amount of data available for testing unsurprisingly

has effects on accuracy similar to the training data. The
desire is again to require only a small amount of data, this
time in order to perform accurate authentication in time to
quickly identify a theft. We therefore analyze the effect of
differing testing sizes to ascertain the appropriate length of
testing data collection.

As with the training size experiment, we restrict the max-
imum amount of data allowed to be 450 seconds of GPS
sourced positive and negative acceleration alongside 180 sec-
onds of accelerometer sourced positive acceleration. Again,
this equates to 25-45 minutes of driving to ensure the larger
datasets do not skew the results to a higher accuracy and
a uniform amount of data is used. We allow full training
datasets, however, as users in the real world will have full
control of their training phase. The threshold set is again
held constant, using the results of the Threshold Size study.
Results appear below in Figure 12:
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Figure 12: Effects of testing dataset size on error
rates

It is important to note again that the thresholds used for
this examination of testing dtaa size were optimized for all
data available. This threshold set works quite well for the
proper test size, and this emphasizes the importance of the
minimum length of time used for gathering testing data. It
also displays the effect of increasing test data on the testing
stringency. To begin, all users are permitted access, result-
ing in no false alarms but 100% mis-detection, and by the
time all 10 blocks of data are used, most unauthorized users
are detected and some legitimate users begin to generate
false alarms. It is therefore important also to prevent test-
ing data size to grow too large and too specific.

As further evidence of the effect of additional data, con-
sider Figure 13. As discussed, the K-S test returns a decision
on whether or not two datasets are from the same distribu-
tion, and it does so by estimating the probability that the
two datasets’ empirical distributions would be the measured
distance apart while still being part of the same overall dis-
tribution. This probability is referred to as the p-value, and
points on this figure are the average p-values for all feature
tests between users as additional data is included. The line
labeled“Self” refers to the average of self-identification tests,
and by the criteria above, the p-values for these tests should
be large. The line labeled “Others” refers to the average of
those tests between distinct users, and these p-values should
be small. The figure shows self-identification tests remain-
ing at a flat rate, indicating that it takes very little time to
match one’s testing data with one’s own training data. As
desired, the p-values for the Others line are below those for
the Self line. Furthermore, while it takes longer to rule out
other users than it does to self-identify, our results show that
the p-values diverge quickly after a few final data blocks are
added to the testing data.
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7.6 Evaluation Summary
To conclude this evaluation, we present the following suc-

cesses:

• We found effective features including positive accelera-
tion measured by the accelerometer as well as positive
and negative acceleration measured by the GPS.

• We found further effective features in partitioning the
above according to specific velocity ranges.



• We showed this collection of features capable of at-
taining 97% self-identification and 91% differentiation
accuracies.

• We illustrated the effects of varying our testing thresh-
olds and the ability to attain very low mis-detection
(around 7%) by allowing slightly higher false alarm
rates.

• We analyzed the size of training and testing data to
determine the requirements for robust accuracy.

8. CONCLUSION
In this paper, we proposed a fast automatic driver recogni-

tion system that continuously authenticates the driver as the
vehicle is operated. Our basic idea is to extract unique fea-
tures from the driving behavior, which cannot be exactly re-
produced by a thief driving away in the stolen car. Through
an in-depth investigation of the typical driving events, we
identified effective driving features (i.e., positive and nega-
tive accelerations, at multiple speed ranges) to distinguish
between the car owner and any unauthorized users. We per-
formed extensive experimental evaluation using the driving
data collected from 31 volunteers. Our experiment results
show that the proposed system can successfully distinguish
that the current driver is the car owner, with 97% accuracy,
while also preventing impersonation 91% of the time.
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