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Abstract—Enterprise networks today host a wide variety
of network services, which often depend on each other to
provide and support network-based services and applications.
Understanding such dependencies is essential for maintaining
the well-being of an enterprise network and its applications,
particularly in the presence of network attacks and failures. In
a typical enterprise network, which is complex and dynamic in
configuration, it is non-trivial to identify all these services and
their dependencies. Several techniques have been developed to
learn such dependencies automatically. However, they are either
too complex to fine tune or cluttered with false positives and/or
false negatives.

In this paper, we propose a suite of novel techniques and
develop a new tool named NSDMiner (which stands for Mining
for Network Service Dependencies) to automatically discover the
dependencies between network services from passively collected
network trafficc. NSDMiner is non-intrusive; it does not require
any modification of existing software, or injection of network
packets. More importantly, NSDMiner achieves higher accuracy
than previous network-based approaches. Our experimental eval-
uation, which uses network traffic collected from our campus
network, shows that NSDMiner outperforms the two best existing
solutions significantly.

I. INTRODUCTION

Enterprise networks today host a wide variety of network
services and applications. Many of these services and appli-
cations do not operate independently; they often depend on
each other to provide and support network-based services and
applications. For example, as illustrated in Figure 1, when a
client accesses a web application, it usually first contacts a
DNS server to resolve the IP address of the web server. Once
contacted by the client, the Web Server further depends on
an Authentication Server (e.g., Kerberos) to verify whether
the client has the required privilege, and if yes, it relies
on a Database Server for accessing data required to render
the final output for the client. The dependencies between
network-based services and applications are either hard-coded
in configuration files or resolved dynamically.

Understanding the dependencies between network-based
services is essential for maintaining the well-being of an
enterprise network and its applications, particularly in the
presence of network attacks and failures. For example, when a
network-based application fails on the end host, it is important
to know what network services are involved in this application
and how they depend on each other to isolate and identify the
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faults. As another example, when a network is under mali-
cious attacks, the knowledge of network services required for
mission-critical applications, the dependency among them, and
the availability of redundant services is invaluable information
for prioritizing possible defense actions during the response to
the attacks.

A typical enterprise network is usually complex and dy-
namic in configuration. It is possible to understand some
service dependencies through analyzing service configuration
files. However, given the wide variety of network services, the
lack of standard server configuration files, and the dynamic
nature of enterprise networks, it is non-trivial, if not entirely
impossible, to identify all network services and their depen-
dencies through analyzing static service configuration files.

Several techniques have been developed to learn the net-
work service dependencies automatically through analyzing
the dynamic network traffic. In the following, we discuss these
techniques and their limitations.

A. Related Work

Network-based Discovery of Service Dependencies: Sev-
eral approaches have been proposed to automatically discover
the dependencies among network services from network traf-
fic. Various types of dependencies in distributed environments
were identified in [13], and Leslie Graph was used as an ab-
straction to describe complex dependencies between network
components [3]. Sherlock was developed to learn service de-
pendencies based on co-occurrence of network traffic and was



employed for fault localization [4]. eXpose uses a modified
JMeasure computation on partitioned packet trace to learn
dependencies [11]. Both Sherlock [4] and eXpose [11] require
a window size parameter, whose choice influences significantly
the detection accuracy. Orion was recently developed to use
spike detection analysis in delay distribution of flow pairs to
infer dependencies [8]. Moreover, fuzzy algorithms were used
to build an inference engine for service dependencies [9].

All of the above approaches focus on analysis of network
traffic, and thus do not require deployment of additional
software on the end systems. However, they all share some
common limitations. They all have high false positives and/or
false negatives, and several of them are too complex to fine
tune in order to produce meaningful results.

Host-based Discovery of Service Dependencies: Host-
based approaches require deployment of additional software
on individual hosts to discover the service dependencies in-
volving these hosts. Macroscope uses an agent on each host to
collect application and network data to infer the dependencies
among network services and applications [14], achieving better
accuracy with minimal false positives than previous network-
based approaches. Host-based approaches employing middle-
wares have also been proposed to solve related problems
such as fault correlation and failure management in distributed
environments. Magpie [5] traces stand-alone events from op-
erating systems and applications in a distributed environment
to construct system behavior models for individual requests.
pinpoint [7] tracks the path of each request as it passes through
an distributed system for failure management. X-Trace [10]
uses network events to reconstruct a users task tree.

All host-based solutions require running an agent on each
host. This is not only intrusive, but also has a negative impacts
on the performance of the end hosts. In typical enterprise or
government networks, such an approach is in general difficult
to deploy due to security and performance concerns.

Other Approaches: ADD uses active perturbation of appli-
cations to learn their dependencies [6]. However, this method
requires the implementation details of the applications, and is
time-consuming to implement considering the broad range of
applications that exist today. Moreover, the approach in [12]
uses configuration and software management repositories such
as RPM and windows registry as information sources to build
application-specific dependency models. Unfortunately, this
approach misses dynamically resolved dependencies.

B. The NSDMiner Approach

In this paper, we develop a new technique called NSDMiner
(which stands for Mining Network Service Dependencies) to
automatically discover network service dependencies from
passively observed network traffic.

Given two network-based services (or applications) A and B,
we say A depends on B, denoted A—B, if A is unable to com-
plete its task without accessing B. The dependencies between
network-based services can be classified into two categories:
local-remote dependency and remote-remote dependency [8].
The dependency A—B is a local-remote dependency if A

depends on a remote service B to provide a (local) service at
A (e.g., a web server depends on a database server to render
content of web pages). The dependency A—B is a remote-
remote dependency if a client depends on a remote service
B in order to access the remote service A (e.g., a browser
depends on a DNS service to access a web server). As pointed
out in [8], local-remote dependencies are commonly seen
on servers, while remote-remote dependencies are commonly
seen on clients.

In this paper, we focus on network-based effective and
efficient discovery of local-remote dependencies, which are
the common dependencies among servers. Our approach has
several nice properties. First, it only uses passively observed
network traffic as input, and thus does not rely on application
behavior or configuration files to identify dependencies. Sec-
ond, it is not restricted to only known services, and does not
need any input about the existing network services and server
infrastructure.

The contribution of this paper is two-fold. First, we de-
velop NSDMiner, a novel technique for automated discovery
of local-remote dependencies among network services from
passively observed network traffic. Our solution is network-
based, introducing minimal or no interference to the existing
network infrastructure. Second, we implement a prototype
of NSDMiner and perform extensive experiments to evaluate
NSDMiner in a production network, with data collected over
26 servers hosting 40 instances of 13 different services. Our
experimental comparison with Orion and Sherlock, which are
the best among existing approaches for network-based service
dependency discovery, shows that our method outperforms
both Orion and Sherlock significantly.

The remainder of this paper is organized as follows. The
next section discusses the intuition and design decisions in-
volved in the development of NSDMiner. Section III presents
the experimental evaluation of NSDMiner and the comparison
with Orion and Sherlock. Section IV concludes this paper and
briefly discusses some future research directions.

II. DESIGN
A. Network Service & Service Dependency

We identify a network service, or just service, as a process
running on a host that is accessed by applications or other ser-
vices over the network to accomplish a specific task. The hosts
offering these services are either preconfigured or resolved
dynamically using a directory service or DNS. A service could
run on a host at a well-known port (e.g., ssh, which runs at
port 22) or a random port mapped by an endpoint mapper.
Multiple services may run on the same host. Following [8],
we identify a service by a triple (ip, port, protocol).

As explained earlier, we represent a service dependency
using the symbol “—”. For example, service A = (Lip, Lport,
Lprotocol) depending on service B = (Rip, Rport, Rprotocol)
is represented as (Lip, Lport, Lproto)—(Rip, Rport, Rproto),
or A—B.

Given a service dependency A—B, we refer to A as the
downstream service and B as the upstream service. Figure 1



illustrates an example of such dependencies, where a web
service depends on an authentication service and a database
service to serve its clients.

Sometimes, certain services are co-located at the same host.
As a result, service requests between the services on the same
host are not transmitted on the network. In this paper, we
do not consider service dependencies that do not involve any
network activity, but concentrate on the dependencies that are
observable over the network.

B. Input

As discussed earlier, we discover the service dependencies
based on passively observed network traffic. We assume that
there are facilities in place to collect network activities of the
services of interest. This monitoring could take place over a
subnet or on individual hosts.

Our approach operates on network flows, including TCP
and UDP flows. A TCP flow can be clearly identified when
TCP is used as the transport layer protocol. A TCP flow starts
with 3-way handshake (SYN, SYN-ACK, ACK) between a
client and a server and terminates with a 4-way handshake
(FIN, ACK, FIN, ACK) or RST packets. However, the notion
of a UDP flow is a bit vague. When UDP is used as the
transport layer protocol, there is no well-defined boundary for
the start and the end of a conversation between a client and
a server. In this paper, we consider a stream of consecutive
UDP packets between two hosts as a UDP flow, if the time
difference between any two consecutive packets is below a
certain threshold.

We represent a TCP or UDP flow as a tuple of 7 attributes:

(StartTime, EndTime, SourcelP, SourcePort, Protocol,
DestinationlP, DestinationPort),

where the attributes are self-explained from their names. For
example, a flow may be represented as

(500, 502.3, 192.168.100.1, 2345, TCP, 192.168.100.100, 80),

indicating a TCP flow from source IP 192.168.100.1 at source
port 2345 to destination IP 192.168.100.100 at port 80 from
time 500 to time 502.3.

We refer to a flow as either inbound or outbound with
respect to the machine. A flow is inbound when it is considered
from the perspective of the destination, and outbound when it
is considered from the perspective of the source. With respect
to a host, we define the inbound flows as those initiated by the
requests it receives from other hosts, and the outbound flows
as the connections initiated by the host itself to other upstream
services. Note that an outbound flow from a host is also an
inbound flow to the upstream host. For example, in Figure 1,
the flow °F’ is an outbound flow w.r.t. 192.168.100.1" and an
inbound flow w.r.t. °192.168.100.100’.

C. Discovery of Services Dependencies

1) Observation: Our approach is based on the following
observation about local-remote dependencies. Consider a ser-
vice that depends on other upstream services to complete its

own task. When this service receives an incoming request, it
needs to initiate requests for the upstream services. In order
to serve the original service request, all the upstream service
requests initiated by this service take place while the original
service request is still active. For example, when a client
connects to a web server, the web server internally connects
to an authentication server to authenticate the client and
then connects to a database server for data access. All these
outgoing connections from the web server are encompassed
within the time frame of the inbound connection from the
client. Figure 2 describes a timeline diagram showing the
connections to and from a webserver.
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Fig. 2. A timeline of connections to and from a webserver

There are a few special cases in the way a downstream
server depends on an upstream server. Even if a service
depends on an upstream service, not every service request
will trigger a connection to the upstream server. For example,
not every request to a web server triggers a connection to
the database server. Moreover, applications may optimize the
connections between the servers using caching, such as cached
domain name resolutions. In addition, some service may
connect to upstream services even when it has not received
any incoming requests due to the need of, for example,
synchronization and authentication. We rely on a statistically
significant number of samples to overcome these behaviors.

2) Algorithm: Based on the above observation we analyze
the flow records for service dependencies. We track such
dependencies using a metric dweight, which is the number
of times a flow to the upstream service happened when the
downstream service is invoked. A potential dependency A—B
is tracked as dweight(A, B).

We process each flow record sorted in the order of their
StartTime. On receiving a flow record, we consider it as an
outbound flow record of the SourcelP and look back at all
previous records to see if the current record is encompassed
within the connection timeframe of any previous inbound flow
record to the same SourcelP. If such an inbound flow record
is found, the current outbound flow might be a flow that



depends on the identified inbound flow, and can be considered
as a candidate dependency. Thus, we increase dweight of the
dependency tuple by one. The current flow is then stored, and
is also considered as an inbound flow of the DestinationIP for
the processing of future flow records.

Note that while processing the current record we check
all previous records for dependency. Verifying all previous
flow records is an expensive operation and the cost increases
linearly over time. To reduce the memory footprint and for
efficient processing, we remove all flow records that end before
the start of the current flow, i.e. whose EndTime is less than
the StartTime of current record. Thus, at any point during
flow processing, we consider flow records that were active
at that instance of time. This helps in achieving near constant
processing time for every record.

Algorithm 1 Discover Service Dependencies
Input: FlowRecords (the set of flow records to be analyzed)
Qutput: Service dependencies
Steps:
PrevInbounds = {}
for all FL < FlowRecords do
ServiceUsage(FL.DestServ) += 1
for all PFL < Previnbounds do
if FL.time C PFL.time then
Update dweight(PFL.DestServ — FL.DestServ)
else if PFL.EndTime < FL.StartTime then
Remove PFL from Previnbounds
end if
end for
Add FL to Previnbounds
end for
for all tracked dependencies (A—B) do
if dweight(A — B)/ServiceUsage(A) > « then
Output (A—B)
end if
end for

The identified dependencies in the previous step could have
false dependencies along with the true dependencies. The
false dependencies are due to coincidental traffic that occur
when a service is servicing a client. We rely on a large
number of samples to reduce the false positives. We consider
a dependency as true, if the ratio of its dweight to the number
of times the service is accessed is at least o. In an identical
case when a server depends on the dependency for every
request it receives, o could be 1. But practically, the value
is much lower because of caching, application behavior and
coincidental traffic. We experiment the performance of our
system with respect to this « in Section III.

3) Ambiguity of Dependencies: When a flow record is
processed, it might be encompassed within the duration of
more than one inbound flows. The outbound flow might be
the result of either of the one inbound flows. Consider the
three flow records F1, F2 and F3,

F1: (100.2, 105.1, 192.168.0.1, 6785, TCP, 192.168.100.100, 80)
F2: (101, 106.5, 192.168.0.2, 2348, TCP, 192.168.100.100, 22)
F3: (102, 102.8, 192.168.100.100, 8764, UDP, 192.168.100.200, 88)

The outgoing flow F3 is encompassed within the timeframe
of both incoming flows F1 and F2. Thus, F1 and F2 are
possibly equally dependent on the outgoing flow F3. Figure 3
illustrates such a situation.
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Fig. 3. An outbound flow encompassed within two incoming flows

To avoid making wrong decisions, we consider two different
modes in addressing such ambiguous dependencies: the shared
mode and the exclusive mode.

In the shared mode, we share the weight of current out-
bound flow among all candidate inbound flows. Specifically,
if an outbound flow is encompassed within the time frame of n
inbound flows, we update the dweight of each of these n tuples
by 1/n. We expect this approach to fairly distribute the weight
among all potential dependencies in case of ambiguity. Though
this solution updates the score evenly for the true dependency
and the false ones caused by coincidental traffic, statistically
significant number of samples will enable us to identify the
true dependency. For example, while processing the above
flow records our shared mode will update the dweight of both
candidate dependencies by 0.5.

In the exclusive mode, we do not update the scores for
any candidate dependency. Specifically, if an outbound flow
is encompassed within the time frame of more than one
inbound flow, we skip the current processing flow record
and do not update the dweight of any candidate dependency.
This approach is based on the intuition that though there are
multiple flow records, we need only a few to exactly identify
the dependencies. This approach is not quite effective when a
system hosts multiple services and is used heavily by clients.
In such cases, it is hard to find exclusive outbound flow
traffic and we might miss some rare dependencies (i.e., the
ones which occur at low frequencies). We will compare the
exclusive and shared modes in Section III.

4) Service Aggregation: Many network infrastructures to-
day deploy redundant services for load balancing and fault



tolerance. In other words, there are clusters of servers pro-
viding identical services. When a service depends on such a
service cluster, it may access any one of the identical upstream
services. This choice could be made randomly at the machine
or resolved dynamically through a different service. When the
information of such a service cluster is known, we can use it
to improve NSDMiner’s performance.

The services offered in such clusters usually have the same
destination port and protocol but different destination ad-
dresses. The dweight of a candidate dependency on this service
is distributed among the instances in the cluster based on the
accessed pattern. To consider the dependency on this cluster
of services as a unified one, we aggregate the dweight values
of dependencies on the service instances in this cluster. Now
the combined value better reflects the dweight of dependency
on the service. Note that this knowledge of service clusters is
not mandatory for our method, but could be used if available.

5) Long-running Flows: It is common to find long-running
flows in any network trace, such as long SSH sessions or
a Remote desktop connection, which could be kept alive
for hours. These long-running flows pose a problem to our
analysis, since any records processed within the timeframe
when these flows are active will show a potential dependency
relation. To remove such false positives we ignore all flows
that are active over a long period of time.

D. Limitations

NSDMiner discovers service dependencies by analyzing
the network flows. For the method to effectively identify a
dependency, the services involved in the dependency have to
be accessed over the network. If a service is rarely accessed
by its clients, NSDMiner will have difficulty in identifying its
dependencies. These limitations are not specific to NSDMiner,
but shared by all network-based dependency discovery tech-
niques. This limitation could be mitigated by collecting data
over an extended period of time.

The accuracy of NSDMiner is still affected by a parameter
o, particularly the false positive rate. Thus, NSDMiner is
not fully free of user input. Nevertheless, parameter tuning
is required by all existing approaches such as Orion [8] and
Sherlock [4]. Moreover, as we will see in our evaluation in
Section III-D3 even with a very low threshold NSDMiner
still reports much lower false positives than the best existing
solutions.

Finally, NSDMiner is not designed to discover remote-
remote dependencies, as discussed earlier. Discovering remote-
remote dependencies requires alternative techniques (e.g.,
Macroscope [14]).

III. EVALUATION

We have implemented NSDMiner, including both the exclu-
sive and the shared modes. In this section, we report the experi-
mental evaluation of NSDMiner, including both the shared and
the exclusive modes, and the comparison of NSDMiner with
Orion and Sherlock, which are the most effective approaches
among the previous network-based solutions.

To get realistic results, we use real-world network traffic
collected from the production network of Department of
Computer Science at North Carolina State University. In the
following, we first give a brief description of the monitoring
facility used to collect the network traffic, and then present
the experiment setup and the results.

A. Monitoring Facility

In this evaluation, we monitor the production network on
the second floor of the building where the Department of
Computer Science is located, including all the internal traffic
across subnets in the building. This network consists of 14
switches hierarchically organized in two levels. Each computer
in this network is connected to a switch via a wall port or a
port on the switch directly. The top-level switches are then
connected to a master building switch through a 10G multi-
mode fiber, which facilitates communication with the campus
network outside of the building.

To collect the network traffic, including the internal traffic,
we set up SPAN sessions on all switches in the monitored
network to capture the packets that pass through them. The
switches are also configured to reduce the duplication in the
SPAN sessions. For example, a packet that comes in and then
out of a switch is reported only once. The switches send
these packets to a collector switch through a dedicated 1G
copper link, and the collector switch then aggregates all SPAN
sessions and sends the packets through a dedicated 10G multi-
mode fiber to a packet sniffer.

The packet sniffer is a Linux box with two 2.8GHz six-core
Intel X5660 processors, 16GB RAM and 438GB HDD. The
sniffer extracts the packet headers and exports it to a storage
server through 10G single-mode fiber. The storage server has
two 2.66 GHz six-core Intel X5650 processors with 24GB
RAM and 1.3TB HDD running Gentoo Hardened Linux. In-
dividual workstations were connected to the storage server for
further processing of data. The entire monitoring infrastructure
was encompassed within a private VLAN not accessible from
any outside network to protect the data collected and ensure
its security. Figure 4 shows the monitoring facility.

B. Experiment Setup

To capture network packets, we used snort [1] running in
packet logging mode. To generate flows out of the captured
packets, we modified softflowd [2], an open source software
capable of tracking network flows. We reused most of the flow
tracking code and added components to preserve client/server
roles and export flows in our desired format. All flow records
are sorted in the ascending order of the flow starting time.

We collected network flows for 46 days (05/10/2011 to
06/25/2011), getting around 378 million flow records. The
production servers in the monitored network hosted a total
of 40 known service instances. 23 servers ran Linux and 3
servers ran Windows. 18 servers hosted a single service, 5
hosted 2 services, and 3 hosted 3 or more services. These
services had varied network loads and access patterns. The
department web server and email server were heavily used,
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while services such as ssh were lightly used. 32 services were
maintained by the departmental IT staff, while the remaining
ones were managed by individual faculty members. Table I
shows information about these servers.

TABLE I
OVERVIEW OF SERVERS

Server oS # Services | List of Services

a Windows 1 svn

b Windows 6 RPC, endpoint mapper, proxy DHCP, SMB, TFTP, DFS
c Windows 6 RPC, endpoint mapper, DHCP, SMB, WDS, DFS
d Linux 3 webservice (2), ssh

e Linux 2 webservice, ssh

f Linux 2 email, ssh

g Linux 2 webservice, ssh

h Linux 2 ssh, database

i Linux 2 ssh, database
jz Linux 1 ssh

Besides the servers, an unknown number of computers were
connected to the switches. We did not distinguish between
servers and regular computers. Every connection initiated to
any computer was monitored for dependencies.

The computers in the monitored network were often con-
figured to use 3 server clusters outside of the monitored
network, including DNS (6 servers), Active Directory (5
servers), and Kerberos (4 servers). These clusters were hosted
and maintained by the campus network IT staff. With such
heterogeneous mix, our monitored network reflects a typical
setup in an Enterprise network.

NSDMiner is designed to run with minimal information
from the user. None of these details is required to run
NSDMiner.

During the dependency discovery process, we maintain the
number of times every service is accessed over the network. A
service has to be accessed a minimum number of times before
its dependencies could be considered. In our experiments, we
set this threshold as 50.

C. Ground Truth

Identifying the ground truth in the monitored network is a
critical task. We established the ground truth with the help of
our IT staff, since most of the services we studied were main-
tained by them. There was almost no documentation. Some of
the services we monitored had well-known dependencies (e.g.,
DNS, authentication servers). However, there were also non-
obvious dependencies that were not even known to our IT staff.
Over the data collection period, we ran NSDMiner, Orion, and
Sherlock over the collected data and repeatedly verified the
results with our IT staff. In case of ambiguity, we referred to
the configuration files of the services. After multiple iterations,
we established the ground truth for evaluation.

Table II summarizes the services and their dependencies.
Most of the services offered were dependent on DNS (53)
for name resolution. Windows-based services were dependent
on Active Directory services for domain queries (389) and
authentication (88). The services that were dependent on those
offered on dynamic ports (RPC) were also dependent on
endpoint mapper to resolve the port numbers. Most of the
Linux-based services were dependent on LDAP (389) for
directory access. Two of the interesting services hosted were
TFTP (69) and database (3306); they were running stand-alone
and was not dependent on any other network service. Windows
deployment service (WDS) and DFS replication service were
offered on dynamically allocated ports and others were offered
on standard well-known ports.

TABLE 11
GROUND TRUTH OF SERVICE & DEPENDENCIES

Service Instances Depend

webservice (80, 443) 4 2 | DNS, DBMS

webservice (80) 1 1 | DNS

ssh (realm-4) (22) 5 2 | Kerberos, DNS

ssh (realm-5) (22) 17 3 | Kerberos, DNS, LDAP

svn (8443) 1 4 | DNS, LDAP, port mapper, RPC

proxy DHCP (4011) 1 2 | DNS, LDAP

DHCP (68) 1 1 | DNS

email (25) 1 2 | mail exchange server, DNS

endpoint mapper (135) 2 3 | DNS, AD, Kerberos

WDS (RPC) 1 5 DNS, AD (LDAP, port mapper, RPC, Kerberos)
DES replication (RPC) 2 5 DNS, AD (LDAP, port mapper, RPC, Kerberos)
SMB (445) 2 5 DNS, AD (LDAP, port mapper, RPC, Kerberos)
TFTP (69) 1 0

database (3306) 2 0

Note that even though we worked hard to identify all
dependencies, there is a possibility that we might have missed
some rare non-obvious ones. In other words, our evaluation
result on false negatives may be lower than the actual value,
though we have high confidence in the false positive result.
The reader is advised to keep this in mind while interpreting
the experimental results.

D. Experimental Results

We ran NSDMiner in both shared and exclusive mode,
collected the dependencies reported and compared it with
the ground truth. Every reported dependency is classified
as either a True Positive (TP) or False Positives (FP). The
missed dependencies are counted as False Negatives (FN). We
also ran experiments with the information about the server
clusters to assess the impact of service aggregation, where the



TABLE III
DEPENDENCIES LEARNED

NSDMiner (o = 0.5%) Previous solutions, Best TP
exclusive shared exclusive agg shared agg Orion agg Sherlock
Service TP | FP | FN | TP | FP | FN | TP | FP | FN | TP | FP | FN | TP | FP | FN | TP FP FN
webservice 8 4 1 8 1 9 3 0 9 5 0 7 13 2 4 47 5
email 3 0 0 3 1 0 2 0 1 2 1 1 2 2 1 2 2 1
ssh(ream-4) 10 1 0 10 1 0 10 1 0 10 1 0 10 1 0 10 27 0
ssh(ream-5) 40 10 11 41 14 10 40 5 11 41 6 10 27 3 24 27 70 24
svn 4 1 0 4 1 0 4 2 0 4 3 0 3 0 1 4 17 0
proxy DHCP 2 1 0 2 1 0 2 5 0 2 7 0 1 3 1 2 354 0
DHCP 1 6 0 1 0 1 3 0 1 3 0 1 2 0 1 46 0
endpoint mapper 3 6 3 6 43 0 3 6 3 6 24 0 2 0 4 6 67 0
WDS (RPC) 4 1 0 4 10 0 4 4 0 4 5 0 0 0 4 4 42 0
DFS replication (RPC) 7 0 1 8 4 0 7 2 1 8 9 0 4 1 4 3 142 5
SMB 9 3 1 9 7 1 10 4 0 10 9 0 9 4 1 10 263 0
TFTP 0 0 0 0 1 0 0 0 0 0 4 0 0 8 0 0 371 0
database 0 1 0 0 1 0 0 2 0 0 2 0 0 10 0 0 15 0
Invalid Services 0 30 0 0 34 0 0 24 0 0 32 0 0 14 0 0 2394 0
Total 91 64 17 96 | 133 12 92 61 16 97 | 111 11 66 | 61 42 73 | 3501 35

dweights of dependencies on the services offered by clusters
are aggregated. Throughout all the experiments, we configured
the threshold a = 0.5%.

1) Initial Results: Table III summarizes the experimental
results. The headings “shared” and “exclusive” refer to the
basic modes without service aggregation, and “shared agg” and
“exclusive agg” refer to the those with service aggregation.

The results show that NSDMiner is effective in identifying
the service dependencies. We are able to identify up to 84-90%
of dependencies with manageable false positives. Around 25-
47% of the false positives were for possible (invalid) services
that do not run on the servers managed by our IT staff.
Strictly speaking, some of these may not be false positives;
they may involve services on non-server machines managed
by individual users. However, we do not have means to verify
this. To be conservative, we consider them as false positives.

The remaining false positives and false negatives were
primarily due to two reasons: (1) The first is the lack of active
use of the service. This leads to insufficient samples to identify
dependencies involving these services. Endpoint mapper is one
such service, which has higher error rate than others due to
lack of samples. (2) The second is rare dependency. Though
the downstream service is heavily used, it rarely accesses
the upstream service. The true negatives of ssh are of this
type. The LDAP server is accessed only on a need-basis by
the ssh service, which could be rare. NSDMiner missed this
dependency on several services.

The experimental results in Table III also show that though
server cluster information has marginal effect on the true
positives, it is effective in reducing the false positive rate by
up to 17% in the shared mode.

2) Comparison of Shared and Exclusive Modes: The exper-
imental results indicate that the shared mode can get more true
positives than the exclusive mode for some applications, but at
the same time the share mode usually produces significantly
higher false positives.

Regarding the better true positives, this is because the shared
mode has less chance to miss the rare dependencies (than the
exclusive mode) in case of flow co-occurrences (e.g., when

an outbound flow is encompassed by two incoming flows).
However, it has higher false positives because the shared
mode distributes the dweights over multiple dependencies and
continues tracking all the dependencies. For the same reason,
the shared mode overall tracks more than double of the number
of dependencies tracked by the exclusive mode. Figures 5(a)
and 5(b) compare the number of services and the number
of dependencies tracked in both modes w.r.t. the the actual
numbers, respectively.

B NSDMiner exclusive M NSDMiner shared

False Negatives
O RPN W B U1 O N ©

1 2 >2

Services offered on server

Fig. 6. False negative rate of servers by number of services hosted

Figure 6 compares the performance of the two modes based
on the number of services running on the server. In the figure,
the x-axis represents the servers offering only one, two, and
more than two services, the y-axis represents the number of
false negatives in each case. The number of false negatives of
the exclusive mode is 2 times more than the shared mode
on servers offering more than two service, while they are
comparable on servers offering one or two services. This
behavior is because the exclusive flows occur less frequently
on systems hosting multiple services, and we missed some
rare dependencies. Figure 5(c) compares the false positives
and Figure 5(d) compares the true positives reported by both
modes. The shared mode is able to identify marginally higher
dependencies with almost twice as many number of false
positives as the exclusive mode. Both modes converge to their
results within almost one third of the flows processed, and
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as expected, false positives increases with further processing.
This shows us that packets captured in 2-3 weeks are typically
enough to learn the dependencies.

3) Comparison with Previous Approaches: To further eval-
uate our approach, we compared NSDMiner with two previous
solutions, Orion [8] and Sherlock [4], which are the two
more effective ones among the network-based approaches. We
implemented both methods as described in their papers. In our
implementation we tracked only local-remote dependencies
and configured them with the same parameters used in [8]
and [4]. For Sherlock we used 10ms time window and for
Orion, we configured it with 300 bins, 10ms bin width,
kaiser window of 8 = 100 and minimum 300 samples per
dependency. Table III shows the results.

We also performed more experiments to compare these
methods using receiver operating characteristic (ROC) curves.
Specifically, we tune the parameter o in NSDMiner, the spike
detection threshold in Orion, and the “chance co-occurrence”
parameter in Sherlock to obtain the data points on the ROC
curves. Figure 7 shows the result, where the x-axis and the
y-axis represent the false positive rate and the detection rate
(true positive rate), respectively.

To get a more complete picture of this comparison, we also
added two data points for the aggregated server side depen-
dencies (Exchange server and Sharepoint server) for Orion
and Sherlock, using the evaluation results in [8]. However,
we advise the reader that since the evaluation is heavily data
dependent, comparing the data points obtained in [8] with our
results is not necessarily meaningful.

Figure 7 shows that NSDMiner is able to identify more
dependencies with less false positives compared with Orion
and Sherlock. Sherlock shows a high number of false positives
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primarily because some services in our monitored network
were co-hosted on the same servers and Sherlock mistook
many co-occurring but independent service requests for service
dependencies. As a result, most of its data points have 90% or
higher false positive rates. Orion, though better than Sherlock,
also missed dependencies. This might be due to varied loads
on services and non-typical delays in accessing them. Figure 8
shows a similar comparison of NSDMiner and Orion with
service aggregation. In both figures, NSDMiner consistently
outperforms Orion and Sherlock in detecting dependencies
with much lower false positive rate.

—=NSDMiner exclusive = Orion = Sherlock
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Fig. 7. ROC — NSDMiner v.s. Orion v.s. Sherlock

4) Effect of Threshold o: We now examine the impact of
the threshold « on the effectiveness of our approach. Figures 9
and 10 plot false positive rate and false negative rate as a
function of the threshold « in different modes. We can see
that a large o can achieve a low false positive rate but result
in a high false negative rate, whereas a small « leads to the
opposite case. If the system goal is to balance both error rates,
we may use the threshold that corresponds to the intersection
of both error rate curves.
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In these figures, the balancing point ranges from 0.2% to
1% depending on the modes. Since we do not have this
information without the ground truth, choosing « around 0.5%
could be a good tradeoff. However, in practice, since the
overall objective is to identify unknown service dependencies,
discovering new dependencies (i.e., low false negative rate)
is in general more important than dealing with false depen-
dencies (i.e., high false positive rate). In other words, false
positives can be filtered by examining the network services,
but missing dependencies are difficult to identify. Thus, a small
threshold is preferred if the number of false positives can be
tolerated.
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===FN (shared) ==-FN (exclusive)
o.8f i FP (shared agg) 0.8 i FP (exclusive agg)
< ‘== FN (shared agg) ‘== FN (exclusive agg)

FP/FN rate
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Fig. 9. NSDMiner shared Fig. 10. NSDMiner exclusive

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented NSDMiner, a novel method to
automatically discover service dependencies from passively
observed network traffic. Our method is simple to tune and
is resilient to varying network conditions. Our investigation
indicates that the shared variation of NSDMiner is better
for learning dependencies that involve hosts offering multiple
services, and the exclusive variation is more suitable when
most hosts offer services exclusively. NSDMiner can run with
minimal user intervention. We evaluated NSDMiner with real-
world network traffic collected from a production campus net-
work. Our evaluation results show that NSDMiner can discover
around 90% of the service dependencies with manageable false
positives. Moreover, our evaluation also shows that NSDMiner
outperforms existing solutions significantly.

Our future work is two-fold. First, we plan to extend the
proposed method to discover service dependencies in real
time, seeking techniques that can handle changing network
configuration and server status. Second, besides the local-
remote dependencies, we would like develop more effective

techniques for remote-remote dependencies, particularly those
that have much lower false positive rate than existing solutions.
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