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Abstract—The power flow model for DC power grids has been
used theoretically to launch false data injection attacks (FDIAs)
against state estimation. We recognize FDIAs are just one possible
attack using the power flow model and that the grid topology
information within the model implies its discovery may also
facilitate topology-based attacks. We show attackers can derive
the power flow model, and thus the topology also. Indeed, with
incomplete data, attackers can accurately reconstruct regions
of the model, or topology, all that is necessary to launch
an attack. We also illustrate how to cause such attackers to
derive instead a convincing fake model by camouflaging the
real model. Consequently, no sensitive information will leak,
so attacks based on this fake model will be ineffective, rather
alerting grid administrators to the attacker’s efforts. Using five
test cases included in the MATLAB power flow analysis tool
MATPOWER, ranging from 9 to 300 buses, an average 67.0% of
the topology may be derived with a 69.1% model accuracy. Lastly,
we find reconstructions of small portions of the model sufficient
for performing FDIAs with 75% success, and that camouflage
prevents 93% of them in all but the 9-bus case.

I. INTRODUCTION

Fundamental to the productivity and stability of a developed
nation is its electrical power grid, which is responsible for
delivering generated power over great distances to individuals,
businesses, and services, thereby maintaining modern life.
The cascading outages that in 2003 affected some 50 million
people in the northeastern US into Canada are now a few years
past, but physical and cyber-attacks against the power grid
occur on the order of every four days in the US [1], making a
robust defense highly imperative. In a publicized 2013 attack,
gunmen caused $15 million in damage to a northern California
substation and were not caught. Such physical attacks are
necessarily localized, while indeed cyber-attacks have no such
constraint and consequently far higher potential impact. A
strong defense in this realm is thus of the highest priority.

We identify that a class exists of cyber-attacks which target
the grid from a knowledge of its power flow model, which we
call model-specific attacks. Within power system monitoring,
the state estimation (SE) process uses this power flow model to
provide the control center an approximate understanding of the
power flow throughout the grid and thereby a means to make
corrections and preserve stability [2]. The first model-specific
attacks discovered are the well-researched false data injection
attacks against SE [3], where an attacker with knowledge of
the power flow model can corrupt the SE accuracy by injecting

false errors into select power meters, without these errors being
detected [3]. Additionally, as the power flow model contains
the topology (i.e. the interconnection network) of the grid [4],
we identify and evaluate an additional model-specific attack in
the form of grid topology information leakage, a compromise
of proprietary information and potential security risk.

Beyond topology leakage and false data injection attacks,
the sensitive nature of the information within the power
flow model indicates a potential for additional model-specific
attacks with various targets and impacts. Rather than defending
against each of these other attacks as they arise, a more
proactive research approach will develop a thorough protection
of the model. Power grid administrators should suppress access
to the model, but it is important to identify any other means
of discovering or deriving it. Accordingly, this research finds
that an attacker may reconstruct the model in Direct Current
(DC) systems using information from the SE process. This in-
formation may be intercepted during communications between
the grid administrators and reporting or distribution centers, for
example, while the model itself would not need to be present in
such communications. This side channel attack places a lighter
data-collection requirement on the attacker than to directly
acquire the sensitive power flow model. Furthermore, we also
explain how an attacker can use incomplete data to recover
portions of the model. This may be all that is necessary for
some model-specific attacks; indeed, in a case study we find
that a small partial model is sufficient for successful false data
injection attacks with high probability.

Central to this reverse engineering attack is the realization
that the power flow model is described by a sparse matrix,
which allows a reasonable starting approximation even from
noisy data where an exact reproduction using traditional al-
gebraic methods fails entirely. However, this approximation is
quite crude, so we have developed novel post-processing tech-
niques such that the attacker may uncover substantially more
accurate information, using knowledge of the data arrangement
methodology fundamental to all DC power flow models. For
example, the symmetry of this matrix and the guaranteed zero-
sum nature of each row/column provide a powerful knowledge
base supporting the attacker in this refinement process.

The power flow model structure also yields an interesting
protection scheme. The integrity and availability of the power
grid being of the utmost importance, an adversary attempting
this attack should not merely be prevented from doing so,Approved for Public Release; Distribution Unlimited 88ABW-2016-3300,
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but also should be identified as having tried. As the attack
requires only passive eavesdropping, its discovery is difficult
unless the attacker believes the attack successful and so carries
on to use the model in some way. Therefore, we construct a
structurally accurate fake power flow model which we use to
camouflage the real model during any transmission of SE data
such that an attacker performing this reconstruction method
will derive the fake model instead. The attacker is inspired
to believe the derivation successful, while any subsequent
topology or model-specific attacks will necessarily fail due
to their incorrect basis. However, the failed attacks can alert
grid administrators to the threat, such that proper defensive
measures can be taken and law enforcement can be notified.

In this research, we find that an attacker may uncover large
portions of the DC power flow model, and show how this can
be used in our novel model-specific attack of grid topology
information leakage. Additionally, we perform a brief case
study finding that the other currently existing model-specific
attack, the false data injection attack, is feasible using the
reverse engineered power flow model. We then exhibit a means
to camouflage the power flow model so an attacker will not
successfully discover it but instead a fake version. We test
these developments using a MATLAB power flow analysis
tool suite called MATPOWER, finding that an attacker can
accurately derive a large portion of the unprotected power
flow model in each of the IEEE 9, 14, 30, 118, and 300-bus
test cases included therein. Specifically, an attacker may suc-
cessfully recover the model with an average 69.1% accuracy
for the systems represented in these test cases, allowing for
unauthorized discovery of 67.0% of their topology after using
the model for topology leakage. Under camouflage, however,
the full model derivation attack is reduced to an average
10.1% accuracy. Without camouflage, the derived models
prove sufficient to successfully launch false data injection
attacks with 75% probability. While the camouflage proves
unsuitable for preventing these attacks in the 9-bus system, it
does however prevent 93% of them in the other systems.

II. BACKGROUND INFORMATION

Not only is uninterrupted power conveyance mandatory for
grid stability, but so also is the quality of this power, requiring
minimal fluctuation in voltage magnitude and frequency to
prevent malfunction of connected electronics. System moni-
toring is the process of managing information collected by
meters in pertinent locations within the grid and stored in a
Supervisory Control and Data Acquisition (SCADA) telemetry
system. These measurements may include bus voltages, power
injections, and power flows in the various subsystems of a
power grid, and the control center uses these to understand
the system context, or state. In particular, state estimation (SE)
is that part of system monitoring in which an approximation
of the current state is derived from meter measurements and
a known power flow model. The resulting series of state
variables is used as input to contingency analysis, which
modifies the use of components within the grid to preserve
its proper function despite possible equipment failures [2].

In DC SE, the state variables and meter measurements are
related through a linear regression model as

z = Hx + e. (1)

AC SE entails a nonlinear relation between these values and
so is often approximated by DC SE for analysis purposes. For
long distance bulk power transmission, DC power is used over
high-voltage, direct current (HVDC) systems [5]. We focus on
the DC SE environment for this segment of our research; since
DC SE is fundamental to AC SE, the attack and defense we
explore here can serve as a basis to extend to the AC model.
In Equation 1, z is the vector of meter measurements of length
m, e is the length m vector of errors for each meter, x is the
vector of state variables of length n, and H is the power flow
model, in the form of an m× n full rank matrix [2].

This information has two direct implications, that the power
flow model H may be used to cause harm, and that it
may be derived from other information in the absence of
its own availability. False data injection attacks, introduced
previously as an example of model-specific attacks, follow
the first implication, and build an attack vector as a linear
combination of the columns of H, which is added to z in the
form of injections at each applicable meter. These injections
undetectably cause the estimated state variables x to deviate
from their correct values which could destabilize the system
monitoring process [3]. This research considers the second
implication, the possibility of determining H from z and x,
given that as a result of research in false data injection attacks,
H is now considered sensitive information.

Specifically, for study of the DC power flow, state variables
x are the voltage angles θ of length n, and the measurements
z are the net injections P measured at each of the n buses in
the power system. They are related by the power flow model
H, which for DC is the nodal admittance matrix Y describing
the electrical admittance over any branches between buses [6].
Y is of size n×n to hold data for possible branches between
each of the n buses and every other, except itself; the diagonal
elements of Y are called self-admittances and describe the total
admittance ending at that bus, to satisfy Kirchhoff’s circuit
laws. In all, each element of Y is given by

Yij =

{
yii +

∑
k 6=i yik j = i

−yij j 6= i

where yij is the admittance between buses i and j, and yii is
the admittance to ground at bus i, typically zero [7].

After this introduction of their physical meaning, this paper
will refer to these values in their general terms of H, x, and z.
With this construction, each branch admittance appears twice
(Yij and Yji, i 6= j), so H = Y is necessarily symmetric. The
diagonal elements are always positive, and the off-diagonal
elements are all negative. Finally, because each bus’ self-
admittance (diagonal element) is the sum of all admittances for
branches connected to that bus (off-diagonal elements in that
row/column), each row/column sums to zero. These properties
will aid in the reconstruction process through post-processing
steps we designed to enforce them upon the initial estimation.



III. POWER FLOW MODEL DERIVATION
ATTACK PROCESS

Recovery of the power flow model may be performed in
two major components, with the second refining the results of
the initial calculation. Additionally, this section describes this
process for deriving a partial model using incomplete data.

A. Initial Reconstruction

As already introduced, we derive the power flow model
for DC systems using pairs of meter measurements and
corresponding state variables. A ready formulation appends n
sets of measurements together as columns of an m×n matrix
Z (with corresponding m × n matrix of measurement errors
E) and likewise n sets of state variables as an n × n matrix
X. The relation

Z = HX + E (2)

now holds, but the error E is irrecoverable from the measure-
ments Z. As this error, normally assumed to be white Gaussian
noise, is suffered by all measurements uniquely, Equation 2 is
better described as

ZE = HX (3)

with ZE and X known by the attacker. However, due to the
random error hidden in ZE , a simple right multiplication of
X−1 in Equation 3 returns a very inaccurate result for H. With
the inaccurate result of the traditional algebraic method, the
attacker’s challenge is to find another way to solve for H. The
sparsity of H is now relevant, as it enables an approximation
via compressive sensing, despite the error in ZE .

Compressive sensing [8] is the process of recovering sparse
signals using a dictionary, or sensing matrix, enabling much
more expedient conveyance than that required by the Shan-
non/Nyquist sampling theorem. Considering the dictionary A
and sparse signal x generating b by relation Ax = b, b may
be sent instead of x, requiring less sampling [8]. This is made
possible by the fact that minimizing the L1-norm (through
basis pursuit, for example) in reconstruction of x from b and
A results in the sparsest solution with high probability [9].

Building from this technique, we show the derivation of
H row by row, in the presence of the aforementioned error.
Equation 3 implies

zi = hiX

where zi and hi are the i-th rows of ZE and H, respectively.
The transpose property ensures

zTi = XT hT
i

which is of the form Ax = b indicating the sparse row hi may
be solved as in compressive sensing, with XT as the dictionary.
Accordingly, each row of H is estimated through basis pursuit
[10], which minimizes the L1-norm, and recompiled into an
overall approximation Ĥ.

The recovered approximation is more resilient to error than
the direct calculation, naturally, as it is an approximation, but
it requires considerable refinement to converge more closely
to the original. As visible in Tables II and I in our Evaluation,

the initial reconstruction is highly inaccurate and will be
unsuitable for use in any further attacks. It is, however, a
good starting point, and the following section details a series
of methods we have developed for refinement.

B. Post-Processing

We detail here a four-step process for augmenting the initial
reconstruction, based on the properties of the DC power flow
model detailed in the background information in Section II:

1) H is symmetrical
2) Diagonal entries are always positive
3) Off-diagonal non-zero entries are all negative
4) Each row (and column) sums to zero

The second property always holds immediately, due to the
strength (high magnitude) of these values relative to the rest
in each vector; the rest do not. In the four steps below, we
ensure they do, while increasing accuracy over the initial
reconstruction Ĥ. The first and second steps run in parallel,
and their results are merged in the third. Thresholds appear in
the first and second steps, and are optimized in Section V-B.

1) Item-specific symmetry enforcement: This step addresses
the first and third properties above, from a focus on each
pair of entries across the diagonal. It begins with a simple
threshold that zeros out off-diagonal values of Ĥ above a small
negative threshold t1. This immediately satisfies Property 3.
Also, while basis pursuit finds the sparsest solution for each
hi in zTi = XT hT

i , in presence of error in ZE this results in
most values in the estimated ĥi being near (but not equal) to
and necessarily changed to zero, which this threshold achieves.
Next, for symmetry across the diagonal (Property 1), entries
that are zero on one side of the diagonal of Ĥ are zeroed out
on the other side if necessary, while entries that are non-zero
on both sides of the diagonal are averaged. The results of this
step are called Ĥ1. This step has a weakness in the form of
non-zero entries which are removed by the threshold for being
smaller than the noise the initial threshold is calibrated to, so
the following parallel step works to recover these.

2) Full row/column symmetry enforcement: Also building
from the initial reconstruction, this step exploits the necessary
symmetry between the full i-th row and i-th column, where the
previous treated only the symmetry of each entry across the
diagonal. We observe that actual non-zero elements of H often
appear as local minima in both the i-th row and i-th column
of Ĥ, while actual zero elements may appear as a minima in
the row, but not the column, for example. This observation is
again due to their relative strength in the compressive sensing
reconstruction process, and is visible in Figure 1 and enables
a noise-agnostic recovery of those non-zero elements of H
which are closer to zero than the average noise in Ĥ. Note in
Figure 1 the wildly dissimilar nature of the row and column
plotted together, except at the four points where non-zero off-
diagonal values should appear.

Therefore, for each row and column pair, positive values in
the initial reconstruction are set to zero for sake of Property
3, after which any matching local minima are identified as the
non-zero elements of that pair. “Matching” local minima are
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Fig. 1: A sample IEEE 118-bus model reconstruction undergo-
ing post-processing Step 2 on column/row 30. Red and green
dotted lines are the initial reconstruction of the 30th column
and row, respectively; the blue line with four negative peaks
shows the four actual non-zero off-diagonal entries of H for
column/row 30.

defined as those within some percentage (threshold t2) of each
other. These are averaged, as in Step 1, for Property 1. Due
to the possibility of adjacent non-zero entries, one of which
would necessarily not appear as a local minima due to the
other, this process is repeated, with identified non-zero entries
temporarily raised to zero, until no new matching minima are
found. Finally, of the potential non-zero values found, those
are kept whose entries on the row and column are sufficiently
close in magnitude to each other. The results are named Ĥ2.

3) Merging Ĥ1 and Ĥ2: As mentioned, Ĥ1 has a dearth of
the near-zero values which Step 1 cannot discern from noise,
some of which may appear in Ĥ2. Also, while the requirement
in Step 2 that derived non-zero values are close in magnitude
between their row and column reconstructions is necessary to
remove many false positives, it also removes some true non-
zero values in Ĥ2, which Ĥ1 may contain. Consequently, we
rewrite Ĥ as Ĥ1 and Ĥ2 merged in a simple union. This is
realized as any zero elements of Ĥ1 which are non-zero in Ĥ2

being replaced with the corresponding non-zero values from
Ĥ2. As any non-zero entries appearing in both Ĥ1 and Ĥ2 will
necessarily be of the same magnitude, having been derived in
the same manner (averaging over the diagonal), this has the
same result as if Ĥ1 and Ĥ2 are reversed.

4) Row/column summation enforcement: Having now en-
sured the symmetry of Ĥ and the negativity of its off-
diagonal elements, Property 4 must next be satisfied, which
requires each row and column to sum to zero. Step 4 iterates
over the columns of Ĥ, finding for each the subset (of any
cardinality) of non-zero off-diagonal elements which most
closely sums in magnitude to the diagonal entry, such that
the entire column sum is nearest zero. Elements outside of
this subset are subsequently set to zero, in the column and
also the corresponding transposed row to preserve Property 1.
Obviously, this means that some elements of columns yet to
be processed are decided by the results of previous columns,
namely, those elements above the diagonal, which reflect over
the diagonal to columns already processed. Each subsequent
column hence contains a “safe set” consisting of its elements
above the diagonal, which may not be zeroed.

The output of these four post-processing steps is an Ĥ forced
to satisfy the structure of the power flow model. Section V-B
details the accuracy gains from post-processing, but briefly the
number of correctly identified zero/non-zero entries increases
by an average of 47.8% additively for the five IEEE test cases,
and the entries’ magnitudes become 44.1% more accurate.

C. Partial Model Derivation

Some attacks making use of the power flow model may
not require the full model, and with some extension this
attack method can reconstruct robust partial models using only
a portion of the existing meters and only a portion of the
desired number of measurement/state variable pairs specified
in Section III-A. This imposes a still smaller requirement on
the attacker while our case study (Section V-E) illustrates
the utility of the partial model in false data injection attacks,
finding that just a small portion of the model is sufficient to
perform these attacks successfully with high probability.

With incomplete information, the model derivation process
differs slightly. From Equation 3, again, we derive Ĥ row by
row, using zi = hiX, where zi and hi are the i-th rows of Z
and H, respectively. We estimate hi as before, but in the case
of access only to a subset of power meters and corresponding
state variables, we can determine each row i only if i is
the index of a meter and state variable which is known. For
example, if only meters and state variables 1 through 35 of
a 118 bus system are available, we can only recreate rows 1
through 35 of H. The result will simply differ in that hi will
only have n− k entries which are presumably accurate, with
the rest assigned zero.

In this manner, using some portion m1 of m meter mea-
surements/state variables and some portion n1 of n sets of
these, the same overall methodology presented in Section III-A
results in Ĥ

′
of size m1 × n1. This is padded with zeros to

form a correctly dimensioned Ĥ, but the non-zero values of
H dimensionally outside of Ĥ

′
are not recoverable. Due to

this fact, Step 4 of the post processing method presented in
Section III-B cannot be performed as it will generate incorrect
results if actual non-zero values of H appear outside of the
recoverable Ĥ

′
. The others remain applicable however, and

able to improve the accuracy of Ĥ.

IV. POWER FLOW MODEL CAMOUFLAGE

Problem space: Preventing power flow model information
leakage will require protecting state variables and meter mea-
surements wherever they appear. Communications from grid
administrators to logging or reporting centers may include this
information in its aggregate (which may be misused for this
attack) for records of past performance or review in case of
later unexpected situations. The aggregate information is thus
the subject of our protection efforts, but an attacker’s ability
should not be ignored to compile the ingredients we have
specified for deriving the full model or just a small portion.
For example, meter measurements need not be retrieved from
some repository if they can be viewed at the physical meters.
In addition, power companies have been loath to provide



encryption at these endpoints due to the necessary addition of
specialized hardware and software encryption solutions. This
reluctance may fade with the continued development of the
smart grid, but the DC systems addressed by this work are
the larger backbone to the substations supplying the end user,
and will consequently require some other mitigation technique
for some time. For this reason, the ability to protect meter
measurements through encryption should not be assumed.

In contrast, for transmission between components of the grid
administration, the compiled meter measurements and state
variables may be encrypted, as the endpoints of these com-
munications can be presumed to have the necessary hardware
and software. Simply encrypting the data will protect it but will
offer no ability to detect that an attacker is eavesdropping. The
sensitive environment of power systems security would benefit
from that knowledge, however, as some attackers are likely
supported by governments. Where a casual attacker would
easily yield to failure, such a motivated attacker will have the
resources necessary to exhaust this attack space and proceed
to another. To effectively defeat this class of attacker is only
possible through their identification and incarceration.

Our approach: We offer an opportunity to identify and
prevent the attack before the attacker proceeds to another
attack space, by providing a false indication of success. We
reason that if an attacker is able to derive a fake power flow
model Ĥf having all the correct characteristics, an attack based
thereupon will both fail and alert the grid administrators. In
the case of FDIAs, the attack vector will not pass bad data
detection, and existing methods for discovering faulty meters
will in so doing physically locate the attacker (who must
physically compromise the applicable meters [3]).

An attacker using our power flow model derivation tech-
nique will need pairs of meter measurements and state vari-
ables, but these should be altered in some way so as to
lead to the solution of Hf instead of H. However, legitimate
administrative duties involving the sending and receiving of
real measurements and variables should persist under this
camouflage, so the data sent should contain the real Z and
X, irretrievable to attackers but not to authorized personnel.
This may be achieved by creating for the attacker to find an
Hf equal to H multiplied with some matrix F, effectively
camouflaging H for all those who do not know F. This F will
also be used to encode/decode Z and/or X, depending on how
F is multiplied with H. Multiple options exist, encoding Z, X,
or both, but the meter measurements Z should be untouched.
Because encryption of power meters is not immediately pos-
sible, the attacker can presumably view the measurements at
the physical meter locations. If these values do not match the
attacker’s eavesdropped data, the camouflage will be obvious.

Accordingly, we inject F into Equation 3 as:

Z = (HF)F−1X. (4)

In Equation 4, Hf = HF will be the modified form of H
which the attacker will derive instead of the true H, using the
unchanged Z and the modified Xf = F−1X. Without knowing
F, it will be impossible to discern the real H, but with F as a

pre-shared secret among authorized parties, the original meter
measurements and state variables will be retrievable. We find
that it takes a very specific yet not generalizable F to form
Hf with the correct properties of the DC power flow model,
so we obtain F from a pre-contrived Hf and the real H as
F = H−1Hf . Creating this fake power flow model Hf is as
simple as constructing a sparse matrix satisfying the properties
of a real model as enumerated in Section III-B. A convincing
fake will also have non-zero values in the same distribution as
the real non-zero values, but in different locations; we give a
sample method of constructing a realistic Hf in Section V-D
where we evaluate its ability to disrupt the derivation process.

Ultimately, by encoding X as above and leaving Z as
is, the attacker may solve Z = HfXf and discover the
fake power flow model Hf , which will be unsuitable for
topology or model-based attacks. We verify the effects of
model camouflage in Section V-D and in our case study on
FDIAs in Section V-E.

V. EVALUATION AND CASE STUDY

A. Setup

We assess our derivation of the power flow model on five
IEEE test cases provided in a collection of MATLAB code
entitled MATPOWER. MATPOWER simulates power flow
calculations in AC and, in our case, DC systems, and provides
sample data for power systems including 9, 14, 30, 118, and
300-bus cases, which we examine here. However, this case
data only comprises the system in one state, while we require
pairs of meter measurements and state variables to form our
matrices Z and X. Also, MATPOWER does not perform state
estimation, due to no simulation of meter measurements and
their errors, but calculates the state variables (voltage angles)
directly as part of the power flow analysis.

To create the collection of state variable sets X, we perturb
each of the calculated state variables to form n slightly
different copies, by adding to each variable random Gaussian
noise of magnitude based on a specified noise level (0.1). This
formulation corresponds to the case where the power grid
state does not fluctuate wildly for some time, that is, when
generation and load are fairly constant throughout the grid.
This scenario is commonplace during night hours when most
people are sleeping or weekday morning hours when most
are working, for example. We then create the collection of n
measurement sets Z by the equation Z = HX. Now, Ĥ may
be calculated directly from Z and X, which is not possible
in practice, so we add noise to each entry of Z to simulate
measurement error, using random Gaussian noise as before.

To simulate systems under different supply and demand
scenarios is prudent for a thorough understanding of the ap-
plicability of this attack in different environments, so we also
construct new case data for each of the five aforementioned
system sizes. Here, we alter the generation capacity for the
generators in the system, as well as branch admittances and
loads. Practically, this is done by filling out the MATPOWER
case structure with values reproducing the distribution of val-
ues in the provided cases. These are held within the necessary



Case No Post-Processing Step 1 only Step 2 only Step 3 Step 4
9 89.3% (37.0%) 69.8% (4.3%) 74.5% (10.6%) 69.8% (4.3%) 70.1% (4.1%)

14 90.4% (30.1%) 76.1% (4.3%) 69.1% (7.1%) 76.1% (4.3%) 71.6% (3.2%)
30 91.1% (27.0%) 71.0% (1.7%) 60.2% (2.7%) 71.0% (1.7%) 70.0% (1.3%)
118 93.2% (32.0%) 66.0% (0.37%) 34.4% (0.29%) 66.0% (0.37%) 65.4% (0.28%)
300 86.9% (5.3%) 64.5% (0.04%) 26.9% (0.0%) 64.5% (.04%) 58.0% (0.02%)

TABLE I: Power system topology reconstruction accuracy: valid connections found (M1) and wrongly identified connections
(M2, parenthetical)

Case No PP Step 1 only Step 2 only Step 3 Step 4
9 37.2% 49.5% 49.0% 49.5% 49.9%

14 39.0% 62.1% 61.6% 62.1% 62.1%
30 27.6% 68.5% 65.0% 68.5% 69.1%
118 0.0% 70.7% 52.3% 70.7% 71.9%
300 58.0% 91.8% 87.3% 91.8% 92.4%

TABLE II: Power flow model reconstruction accuracy: simi-
larity of H and Ĥ (M3)

constraints, such as power drawn from a generator being
limited to the range supported by that generator. Unique power
flow analyses may then be performed on these constructed
cases to provide different power flow models to test.

A variety of approaches could be taken to optimize the
thresholds used in post-processing the results of the initial re-
construction. We focus on the topology accuracy and calculate
a confusion matrix, minimizing the sum of the false positives
(identified connections which do not exist) and false negatives
(actual connections undiscovered) to optimize. Depending on
an attacker’s goals one or the other type of error could be
given precedence. To present resultant accuracies, we employ
three metrics, the first two describing topology accuracy, and
the third representing the overall accuracy of the reconstructed
power flow model. Working from the confusion matrix, the
first metric M1 is the percentage of valid connections found,
and the second metric M2 is the percentage of unconnected
buses incorrectly derived as connected (“false connections”):

M1 =
TP

TP + FN
,M2 =

FP

FP + TN

Then, an accurate knowledge of the power flow model in its
entirety relies upon the non-zero values having the right mag-
nitude, to correctly describe the impedance on each branch.
The third metric M3 is defined as the total difference between
Ĥ and H, standardized as a percentage of the total magnitude
of H, and subtracted from 1 to indicate similarity. That is,

M3 = 1−
∑

i,j |Ĥij −Hij |∑
i,j |Hij |

In all further figures and tables, Topology accuracy refers to a
maximal M1 and minimal M2, and Full Model accuracy refers
to a maximal M3.

B. Power Flow Model Derivation Accuracy Optimization

For each of our five test case sizes, we generate ten power
flow models as described in our Evaluation Setup (Section
V-A). We then generate paired measurements and state vari-
ables matrices Z and X ten times for each model. Using these
100 Z and X pairs, we test our post-processing methods and

vary the two thresholds involved, to verify the methods work
to refine the results, and find the thresholds which best achieve
this. For comparison, we present the accuracy obtained by the
bare reconstruction process with only a small threshold applied
to take near-zero values to zero. (Without this threshold, false
positives - non-zeros, or wrongly hypothesized connections -
will be nearly 100%, so we consider this “no post-processing”
in our reported numbers for more informative comparison.) We
then test the post-processing as Step 1 only, Step 2 only, Steps
1 and 2 combined (Step 3), and Full post-processing (Steps
1-4). Steps 1 and 2 each have one threshold to optimize, so
in performing these tests we optimize whichever one or both
are applicable. We illustrate in Figure 2 this process for the
IEEE 30-bus case, but report all results in Tables I and II.

Without post-processing, 91.1% of valid connections are
found for the 30-bus case. While this is high, 27.0% of
unconnected pairs of buses are falsely identified as connected,
so the overall model accuracy is only 27.6%. For reference, the
sparsity of the IEEE 30-bus case is roughly 88%, so a 27.0%
false positive rate results in around 213 invalid hypothesized
connections, which is far more than the 112 valid connections.
Minimizing the false positive rate is of high importance, hence
the post-processing. Threshold optimization for Step 1, as
shown in Figure 2a, finds the lowest error sum with threshold
t1 = 3, resulting in 71% of valid connections found and a
much-reduced 1.7% of non-connections assumed connected.
The optimization for Step 2 is performed similarly to Step 1,
with a threshold t2 = 0.7 resulting in the lowest error, as illus-
trated in Figure 2b. Figures 2c and 2d show the optimization
of both thresholds for Step 3 and Step 4, with the heat maps
representing the same threshold optimization process but in
two dimensions for the two applicable thresholds. Ultimately,
with thresholds t1 = 2.75 and t2 = 1.0, the lowest cumulative
error is found for Step 4, with 70% of valid connections found
and only 1.3% of non-connections mis-attributed.

Examination of the achieved accuracies shows a higher
overall model reconstruction accuracy found for larger sys-
tems. Table II exhibits this trend clearly, though it may
be expected that larger systems would be more difficult to
reconstruct. However, compressive sensing requires a certain
degree of sparsity for an accurate reconstruction of the data
[9]. The smaller cases are far less sparse than the larger cases,
and so are necessarily harder to reconstruct. Additionally,
while topology reconstruction accuracy decreases slightly for
the large systems (Table I), it is important to note the tiny
amount of wrongly identified connections for those systems.
With the sparsity of the 300 bus power flow model around
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(c) Post-processing Step 3 (Steps 1 and 2 combined)
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(d) Post-processing Step 4 (full post-processing)

Fig. 2: Threshold optimization for each of the four post-
processing steps in the IEEE 30-bus test case

98%, this corresponds to an average of less than five wrongly
identified connections. Optimizing the two thresholds as we
have is logical for an attacker interested in the topology of the
power grid, ensuring that while not all of the grid topology is
discovered, few identified connections are fictitious.

C. Partial Model Derivation Accuracy

We again generate ten power flow models for each of our
five test case sizes, this time only creating one pair of meter
measurements Z and state variables X for each. Then, we
experiment with reconstructing differing submatrices of H for
each of these ten power flow models. In this experiment, all
tested submatrix sizes begin at the top left entry and extend to
some varied percentage of rows and columns based on the per-
centage of meter measurements and state variables simulated
as available. Consequently, in the heat maps present in Figure
3, each entry corresponds to the accuracy of reconstructing the
submatrix of H starting at the top left element and extending
to that entry (normalized by percentage of data used). Only
the 300-bus case is shown, due to space limitations, but it is
representative of the trends visible in the other cases. Its heat
maps are broken up into 4% partitions in each direction, for
a fine-grained division of its large number of buses, while the
smaller cases have fewer partitions.
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Fig. 3: Partial reconstruction accuracy for the IEEE 300 bus
test case, representative of the rest. Each accuracy entry on
the heat map corresponds to the partial reconstruction with
dimensions starting in the top left and spanning to that entry.

The heat maps in Figure 3 depict accuracy measured ac-
cording to the two metrics M1 and M2, as before representing
the percentage of valid topological connections found and the
percentage of unconnected buses incorrectly presumed to be
connections, respectively. All post-processing is used except
for Step 4, because with incomplete rows/columns, it cannot
be assumed that non-zero values will not appear outside of
the recoverable Ĥ. Consequently the thresholds t1 and t2 are
set to the values optimizing Step 3 as shown in Tables I and
II. The true positive heat map exhibits a trend of more valid
connections found nearing 100% of data used, where it is
comparable to the values reported in those tables for Step 3.

Viewing the false positive heat map, portions of the model
having disproportional numbers of columns to rows tend to
have a lower rate of false connections. This is largely due to
the greater proportion of zero to non-zero elements, causing
a larger denominator for the false connections metric M2. As
visible in the corresponding valid connections heat map, M1

suffers for those more rectangular model subgraphs. Also, the
corresponding full model accuracy (metric M3, not pictured) is
lower for these as well, because an imbalanced ratio of rows to
columns means there is less data for the post-processing steps
to work with in refining the actual values. As the unprocessed
Ĥ is not naturally symmetric, Steps 1 and 2 are designed to
recreate the symmetry of H, but if the portion examined has
more rows than columns (or vice versa) then Step 2 will not
be able to address the extra rows (or columns). This is also
why the heat maps are not perfectly symmetric while H is.

D. Derivation Accuracy under Model Camouflage

The camouflage process begins with the construction of a
fake power flow model Hf . As this needs to be a convincing
fake, beyond fitting the properties of a power flow model as
enumerated in Section II it should have values of the same
order as a real model, and it should have a similar degree
of sparsity. Consequently, in constructing Hf for a given test
case, we derive a list of values reproducing the distribution of
off-diagonal values in H for that case, and with these fill the
strictly upper triangular portion of Hf . These values are added
at random according to a probability matching the number
of off-diagonal values in H, to maintain a similar degree of



Without Camouflage With Camouflage
Case Topology Full Model Topology Full Model

9 70.1% 49.9% 42.1% 14.4%
14 71.6% 62.1% 40.0% 16.1%
30 70.0% 69.1% 30.3% 8.1%

118 65.4% 71.9% 31.0% 11.7%
300 58.0% 92.4% 42.0% 0.0%

TABLE III: System topology and power flow model recon-
struction accuracy without and with the effects of camouflage

sparsity. The upper triangular portion is mirrored over the
diagonal to instill symmetry, and finally the values of each
row/column are summed with the absolute value of this sum
set as the diagonal. The resulting Hf is now a valid power
flow model, but for a system that does not exist.

We again generate ten power flow models for each of our
five test cases, each with a pair of Z and X. Then, each model
is given camouflage with Hf calculated as above. Stemming
from Equation 4, we then generate a fake set of state variables
by Xf = F−1X = (H−1Hf )

−1X = H−1f HX, while Z is left as
is. The model derivation process is launched for each model,
using full post-processing with the thresholds optimized in
Section V-B. The corresponding highly inaccurate results are
displayed in Table III in contrast to the more accurate results
without camouflage. The percentage of topology accuracy
that does appear during camouflage owes essentially to the
portion of non-zero values which comprise the diagonal of
every power flow model, and is therefore unavoidable from
a defense standpoint, but meaningless to the attacker. For
example, in the 118-bus system, an average of 143.4 non-zero
entries of H were found, but 118 of them are the diagonal
elements and an additional average 319.6 non-zero entries
were camouflaged. Furthermore, the full model accuracy is
extremely low, especially for large systems with more off-
diagonal values. The following case study shows false data
injection attacks using a camouflaged fake model largely fail.

E. Case Study: False Data Injection Attacks Using A Derived
Power Flow Model

The probability of successfully carrying out FDIAs is de-
rived in the original source material [3], but this is again based
on the assumption of having the correct power flow model.
In this research, the power flow model is calculated, and not
without error, and so its suitability for a model-specific attack
such as this should be tested. Furthermore, we examine the
efficacy of carrying out these attacks using only a portion of
the existing meters and only a portion of the desired number
of measurement/state variable pairs. We lastly illustrate the
results of this attack when the model is under camouflage.

To reduce the impact of sporadic large noise in meter
measurements or their malicious alteration, the bad data de-
tection process first identifies and removes any measurements
deviating strongly from their expected values. The calculation
common to the various existent methods is a residual error
comparison between the vector of observed measurements
and that of hypothetical measurements calculated using the

Size of Ĥ #Meters to State Variable Differences
Case Compared to H Compromise Mean Maximum

9 25% 2 4.2% 14.2%
14 11.1% 2 0.5% 0.8%
30 6.25% 3 4.2% 23.5%

118 6.25% 10 0.9% 3.4%
300 6.25% 25 8.9% 498.1%

TABLE IV: Attacker requirements and resulting average and
maximum state variable alterations

estimated state variables [4]. That is, after generating the
estimate x̂ of state variables x, the expected measurements
are calculated as ẑ = Hx̂ and compared with the actual
measurements z. If the 2-Norm of this difference (the residual)
is below a specified threshold, the measurements are assumed
correct, as are the corresponding estimated state variables.
False data injection attacks form an attack vector a as a linear
combination of some columns of H, which is added to z by
corrupting the meters corresponding to non-zero elements in a
[3]. An attack vector may be generated in the same way using
Ĥ (as a padded Ĥ

′
), but as Ĥ is merely an estimation of H,

this attack vector is not guaranteed to pass bad data detection.

no attack
attack
camo

9 14 30 118 300

Fig. 4: Normalized error residuals without and within the
presence of false data injection attacks using the derived power
flow model Ĥ, for each of the IEEE test cases.

Nevertheless, this research finds these attacks very viable
with this limited knowledge. Figure 4 illustrates the residu-
als calculated when the system is provided unaltered meter
measurements (“no attack”) and those having been modified
using Ĥ (“attack”), for each test case and normalized for
display. To set a threshold during bad data detection allowing
for all of the legitimate residuals will evidently also allow
for a large majority (75%) of the compromised measurement
residuals to pass as well; compromised measurements cannot
be distinguished from natural measurements.

Table IV states the requirements on the attacker to perform
the FDIAs in Figure 4, as well as the resulting impact of these
attacks on the accuracy of the state variables. These results use
the default test cases with Z and X pairs generated ten times
per, and an attack vector formed by a linear combination of
the first third of available reconstructed columns, with random
weights and constructed ten times per Z and X pair. This
means the average state variable difference is an average over
100 attacks, per case, and the maximum variable difference
is the average of each attack’s maximum effect. Evidently, at



least one state variable was altered by a factor of five, on
average, during 100 attacks against the 300-bus case, and they
were all, on average, modified by 9%.

Returning to Figure 4, the residuals labeled “camo” are
those calculated when the power flow model is under cam-
ouflage. Except for the 9-bus case and 28% of the 300-bus
case, these residuals are of clearly different magnitudes than
those for the unaltered meter measurements. The small size
and relative lack of sparsity for the 9-bus system indicates
that it may not be an appropriate candidate for application of
camouflage, but the larger systems clearly benefit. Indeed, all
attacks against 14, 30, and 118-bus systems are prevented.

VI. RELATED WORK

Despite extensive research into FDIAs against state estima-
tion and their limits and impacts, the underlying requirement
for the attacker to know the power flow model remains largely
unexplored. The potential is similarly unexplored for the power
flow model, or the grid topology contained therein, to be
misused in ways other than the former with FDIAs. Deriving
the model is deemed impossible using just a collection of
measurements in [11], but the topology of the system is
attained using a joint estimation of both the model H and
the state variables X, made convex using an iterative method
switching between these two. Having been tested only on
the IEEE 14-bus system simulation data, and presenting the
derivation accuracy largely graphically, [11] is not particularly
tenable. In addition to the more comprehensive test cases, our
research estimates only the power flow model H, which is
more computationally expedient, and we achieve this as well
as leaking the network topology with high accuracy.

In parallel publications [12] and [13], the authors perform
a re-creation of the power flow model with a very similar
theme as the previously discussed related work. As publicly
available local pricing calculations are performed using the
power flow model, a collection of prices local to every meter
were used rather than their measurements. Analogous to [11],
these authors perform a joint estimation of the model and
another component used in the price estimation. In this case,
the authors state the power flow model as the output of
this process, though the accuracy is again only graphically
represented, and only for the IEEE 30-bus case. From this
view it appears the topology information is accurate, but the
power flow model information is less so. We accordingly strive
for more thorough testing and concrete portrayal of results.

The problem of network topology derivation on the part
of power grid administrators has spawned slightly more work
recently, for the sake of performing accurate state estimation in
an environment that changes with time. Recent trends toward
distributed generation on the part of customers adding solar
power to their homes cause topological changes grid adminis-
trators need to incorporate, as state estimation is dependent
upon these aspects they do not govern. Frequency domain
reflectometry is used over the power line communications
channel by [14], which has the same topology as the power
grid, to determine lengths of branches and where they separate.

A similar strategy is used in [15], instead compiling end-
to-end distance measurements and working out distances of
interior nodes from these. These efforts focus on small “micro
grids” with the latter requiring considerable foreknowledge.
Another work suggests an announcement protocol to be carried
out when a new endpoint is added to the topology, for a
decentralized approach [16]. Clearly, these ideas will not
facilitate a leak of the power flow model by an attacker.

VII. CONCLUSION

This research illustrates an attacker’s ability to reverse
engineer a large portion of DC power flow model to an
accuracy of 69.1% (averaged across 5 IEEE system sizes),
including 67.0% of its topology, and illustrates its use in
performing false data injection attacks against state estimation.
The residual error caused by false data injection attacks using
this reconstruction is well hidden within the inherent error,
but demonstrate a novel camouflage technique able to prevent
them 93% of the time in systems other than the 9-bus case,
by reducing the inferred system model accuracy to 10.1%.
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