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A power grid is a complex system connecting electric power generators to consumers through
power transmission and distribution networks across a large geographical area. System moni-
toring is necessary to ensure the reliable operation of power grids, and state estimation is used
in system monitoring to best estimate the power grid state through analysis of meter measure-
ments and power system models. Various techniques have been developed to detect and identify
bad measurements, including interacting bad measurements introduced by arbitrary, non-random
causes. At first glance, it seems that these techniques can also defeat malicious measurements
injected by attackers.

In this paper, we expose an unknown vulnerability of existing bad measurement detection
algorithms by presenting and analyzing a new class of attacks, called false data injection attacks,
against state estimation in electric power grids. Under the assumption that the attacker can
access the current power system configuration information and manipulate the measurements of
meters at physically protected locations such as substations, such attacks can introduce arbitrary
errors into certain state variables without being detected by existing algorithms. Moreover, we
look at two scenarios, where the attacker is either constrained to specific meters or limited in
the resources required to compromise meters. We show that the attacker can systematically and
efficiently construct attack vectors in both scenarios to change the results of state estimation in
arbitrary ways. We also extend these attacks to generalized false data injection attacks, which
can further increase the impact by exploiting measurement errors typically tolerated in state
estimation. We demonstrate the success of these attacks through simulation using IEEE test
systems, and also discuss the practicality of these attacks and the real-world constraints that limit
their effectiveness.
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2 . Y. Liu et al.

1. INTRODUCTION

A power grid is a complex system connecting a variety of elepbwer generators to cus-
tomers through power transmission and distribution néta/across a large geographical
area, as illustrated in Figure 1 (adapted from [Nationaligc Telecommunications Ad-
visory Committee (NSTAC) — Information Assurance Task EO{i&TF) ]). The security
and reliability of power grids has critical impact on sogieffor example, on August 14,
2003, a large portion of the Midwest and Northeast UnitedeStand Ontario, Canada, ex-
perienced an electric power blackout, which affected aa waith a population of about 50
million people. The estimated total costs ranged betweeildn and $10 billion (U.S.
dollars) in the United States, and totaled $2.3 billion (&#an dollars) in Canada [U.S.-
Canada Power System Outage Task Force 2004].
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Fig. 1. A power grid connecting power plants to customers viagy transmission and distribution networks

1.1 System Monitoring and State Estimation

System monitoring is necessary to ensure the reliable tiperf power grids. It provides
pertinent information on the condition of a power grid basedthe readings of meters
placed at important components of a power grid, such as aifiss. The meter mea-
surements may include bus voltages, bus real and reactiverpnjections, and branch
reactive power flows in every subsystem of a power grid. Tmesasurements are typi-
cally transmitted to @ontrol centey where the control center staff, with the assistance of
computers, collect crucial system data and provide ceéngéimonitoring and control ca-
pability for the power grid. Measurements are usually staneatelemetry systepwhich

is also known asupervisory Control And Data Acquisition (SCABAstem.

State estimations used in system monitoring to best estimate the power date s
through analysis of meter measurement data and power systetals. State estimation
is the process of estimating unknown state variables in eepowid based on the meter
measurements. The control center staff use the outputtef estimation as they perform
contingency analysis, in which they reason about poteopiatational problems in the grid,
the actions they may take to avoid those problems, and trenfial side effects of those
actions. For example, they may choose to increase the yielgpower generator in order
to maintain reliable operation even in the presence ofddely., a generator breakdown).
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False Data Injection Attacks against State Estimation in Electric Power Grids . 3

State estimation uses power flow modelsp@dwer flow modeis a set of equations that
depict the energy flow on each transmission line of a powel: g AC power flow model
is a power flow model that considers both real and reactiveep@nd is formulated by
nonlinear equations. State estimation using an AC powertilagdel can be computation-
ally expensive and does not always converge to a solutions,Tgower system engineers
sometimes use a linearized power flow mod®l; power flow modelto approximate the
AC power flow model [Li et al. 2008; Hertem et al. 2006].

1.2 Previous Defense against Bad Measurement in State Estimation

It is conceivable that an attacker may attempt to introduediaious measurements to
achieve her goals. For example, the attacker may directhpcomise substation meters in
a power system or hack computers that store meter measuieto@nject malicious data.
If these bad measurements affect the outcome of state éistimtne resulting misinfor-
mation can reduce the control center operators’ level oasitnal awareness, thus helping
the attacker reach or get closer to her malicious goals.

Power systems researchers have realized the threat of slireenents and developed
techniques for processing them (e.g., [Monticelli 1999i Iéi al. 1985; Monticelli and
Garcia 1983; Monticelli et al. 1986; Mili et al. 1984; Lin aR@n 2007]). These techniques
first detect if there are bad measurements, and then idaridyremove the bad ones if
there are any. Some of these techniques (e.g., [Montic&® 1Monticelli et al. 1986; Mili
et al. 1984]) were targeted atbitrary, interacting (i.e., correlated) bad measurements. At
first glance, it seems that these approaches can also deéeatalicious measurements
injected by attackers, since such malicious measuremantbe considered as interacting
bad measurements.

1.3 False Data Injection Attacks

However, in the research reported in this paper, we discinagrif an attacker knows the
current configuration of the power system, all existing atgms for bad measurement
detection and identification in DC power flow models have amam vulnerability that al-
lows an attacker to bypass their safeguards. The fundahreaton for this failure is that
all existing algorithms for bad measurement detection ing@@er flow models rely on
the same assumption that “when bad measurements take {ilacguares of differences
between the observed measurements and their correspaetinmtes often become sig-
nificant [Lin and Pan 2007]."” Our investigation indicatesttithis assumption is not al-
ways true. If the attacker can determine the current powstesy configuration, she can
systematically generate bad measurements so that the absumption is violated, thus
bypassing bad measurements detection.

In this paper, to gain insights of the aforementioned vidhagity, we present and ana-
lyze a new class of attacks, call&lse data injection attacksgainst state estimation in
electric power grids. If the attacker can determine theantrconfiguration of a power sys-
tem, she can inject malicious measurements that will milsiea state estimation process
without being detected by any of the existing techniquesat measurement detection.
We also extend false data injection attacks to a generaliegesion, which we referred to
asgeneralized false data injection attacke such an attack, an attacker can utilize the
small measurement errors typically tolerated by statenasidon algorithms so that she can
further increase the impact of false data injection attagksout being detected.

In this paper, as the first step in our research, we focus aokstigainst state estimation

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



4 . Y. Liu et al.

using DC power flow models. We present false data injectitacks from the attacker’s
perspective. We first show that it is possible for the attati&énject malicious measure-
ments that can bypass existing techniques for bad measntetagction. We then look
at two plausible attack scenarios. In the first attack s¢entre attacker is constrained
to accessing some specific meters due to, for example, eitf@hysical protection of the
meters. In the second attack scenario, the attacker islinmt the resources available to
compromise meters. For both scenarios, we consider twalpesdtack goalsrandom
false data injection attacksn which the attacker aims to find any attack vector as long
as it can lead to a wrong estimation of state variables,targkted false data injection
attacks in which the attacker aims to find an attack vector that cgct@rbitrary errors
into certain state variables. We show that the attacker gstematically and efficiently
construct attack vectors for false data injection attaoksath attack scenarios with both
attack goals.

We further look at generalized false data injection attaeksch are extensions to false
data injection attacks. The primary objective is to see ifatacker can achieve more
impact by taking advantage of the small measurement erypisatly tolerated by state
estimation algorithms. As we did for false data injectioiacks, we show how an attacker
can construct a valid attack vector to bypass detection @adtierrors to the outcome of
state estimation in both attack scenarios with both attaxddsy Moreover, we quantify
the possible gains that generalized false data injectitatkd offer through theoretical
analysis.

We validate these attacks through simulation using IEEESestems, including IEEE
9-bus, 14-bus, 30-bus, 118-bus, and 300-bus systems [Zimameand Murillo-&nchez
2007]. The simulation results demonstrate the successeséthttacks. For example, to
inject a specific malicious value into one target state Weiathe attacker only needs to
compromise 10 meters in most cases in the IEEE 300-bus sysataioch has 1,122 meters
in total. In addition, for generalized false data injectaitacks, we perform simulation on
IEEE test systems to examine the additional impact an ataathieves beyond false data
injection attacks. The simulation results show that eveahéfattacker fails to launch the
original false data injection attacks, she can still injeabrs to state estimation through
the generalized version of attacks. Moreover, the impattamge systems are greater than
those on small systems, and errors injected to the estinbhtesrtain state variables in
large systems (e.g., IEEE 300-bus system) are significertigr than those injected to the
estimates of other state variables.

1.4 Requirements and Practical Implications

False data injection attacks do pose strong requirementhdoattackers. First, the at-
tackers must know the current configuration of the targetguasystem, particularly the
topology of the system. This system configuration changegifntly due to planned daily
maintenance of power grid equipment and unplanned events asi unexpected equip-
ment outage. Normally such information is only availabléhat control centers of power
companies. Physical access to control centers is highlylaggd and protected, given the
sensitivity of the control centers. Thus, it is non-trivfal the attackers to obtain such
configuration information to launch these attacks.

Another requirement for the attackers is the manipulatibthe meter measurements.
The attackers need to physically tamper with the meters amipulate the meter measure-
ments before they are used for state estimation in the dargnter. Many of these meters
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are located in places where there is protection againsthiodzed physical accesses (e.g.,
substations). Thus, it is non-trivial to manipulate the en@teasurements.

The primary benefit of studying false data injection attaske expose the vulnerability
in existing state estimation techniques. The exact implstich attacks depends not only
on the introduced errors, but also how the measurement dathtfius the measurement
errors) will be used in the end applications. In a typicalleagion in the power grid today,
control center personnel are usually involved in the denisnaking process. Experienced
operators may be able to identify anomalies caused by statkat Additional research is
necessary to clarify the implication of such attacks ined#ht scenarios.

It should be noted that we assume DC power flow models in stéit@aion. For large
power systems, nonlinearities become prominent, so tkad® power flow model is not
accurate anymore. Hence, false data injection attacksllmasthe DC power flow model
may lead to limited impact on large power systems. HoweweriC power flow model
is the starting point of our research, and the current resalh serve as the foundation for
future research on more complicated models than the DC médehn example, follow-
ing the preliminary version of this paper [Liu et al. 200%¢cent work in [Sandberg et al.
2010] considered the AC power flow model and proposed a neeted false data injec-
tion attack, whose goal is to manipulate one power flow messeant without triggering
alarms [Sandberg et al. 2010]. This attack requires leswletlye about the system than
the targeted attacks presented in this paper.

1.5 Organization

The rest of the paper is organized as follows. Section 2 givaese background informa-

tion and discusses related work. Sections 3 and 4 preseha#ie principles of false data
injection attacks and generalized false data injecticacht, respectively, and provide ap-
proaches for implementing both random and targeted falseijection attacks in the two

attack scenarios. Section 5 demonstrates the successsefdttacks through simulation.
Section 6 concludes this paper and points out some futueares directions.

2. PRELIMINARIES

Power System (Power Grid): A power transmission systefar simply apower systemn
consists of electric generators, transmission lines, eartstormers that form an electri-
cal network [Wood and Wollenberg 1996]. This network is atstled apower grid It
connects a variety of electric generators together withst bbusers across a large geo-
graphical area. Redundant paths and lines are providedaspalver can be routed from
any power plant to any customer, through a variety of roltased on the economics of
the transmission path and the cost of power. A control caatasually used to monitor
and control the power system and devices in a geographieal ar

State Estimation: In order to ensure that a power system continues to operatevelven
some components fail, power engineers use meters to meygtgm components. Those
meters take measurements such as real power injectionse$ laund real power flows of
branches in the power system, and report their measureiteetiits control center, which
then estimates the state variables of power system usingr metasurements. Examples
of state variables include bus voltage angles and magmsttudéter obtaining estimates of

1In DC power flow model, voltage magnitudes and reactive powevsflare of little concern, and thus state
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state variables, the control center can decide whethertdhagower system is operating
properly. In simple terms, the state estimation probleno isstimate power system state
variables using meter measurements.

A more precise definition of state estimation is given aofed. Letx = (z1,zo, ...,
z,)T andz = (21, 22, ..., 2,)T denote state variables and meter measurements, respec-
tively, wheren is the number of state variables, is the number of meter measurements,
andm > n. Further lete = (eq,es,...,e,)7 denote measurement errors. The state
variables are related to the measurements through the modeh(x) + e [Monticelli
1999], wheréh(x) = (h1(x), ..., h,n (x))T andh;(x) is a function ofx. Givenz, the state
estimation problem is to find the estima&tef x according to this model.

For state estimation using the DC power flow model, the @dbietween measurements
and state variables can be represented by a linear regressitel

z=Hx+e, 1)

whereH is anm x n full rank matrix to allow estimating from z [Wood and Wollenberg
1996]. Three statistical estimation criteria are commaislgd in state estimatiothe max-
imum likelihood criterionthe weighted least-square criteripandthe minimum variance
criterion [Wood and Wollenberg 1996]. When meter error is assumed tohbeally dis-
tributed with zero mean, these criteria lead to an idengséimator (i.e., minimum mean
squared error (MMSE) estimator) with the following matrodigion

%= (HTWH) 'H Wz, 2)

whereW is a diagonal matrix whose elements are reciprocals of thaneges of meter
errors. That s,

wheres? is the variance of theth meter { < i < m).

Bad Measurement Detection:Bad measurements may be introduced due to various rea-
sons such as meter failures and malicious attacks. Teaemigubad measurement detec-
tion have been developed to protect state estimation [Wadd/ollenberg 1996; Monti-
celli 1999]. Intuitively, normal meter measurements usugive an estimate of the state
variables close to their actual values, while abnormal omag “move” the estimated state
variables away from their true values. Thus, there is ugdalconsistency” among the
good and the bad measurements. Power systems researahygosqut to calculate the
measurement residual — Hx (i.e., the difference between the vector of observed mea-
surements and the vector of estimated measurements), arits &sNorm|jz — HX|| to
detect the presence of bad measurements. Specifidally, HX|| is compared with a
thresholdr, and the presence of bad measurements is inferrgel # Hx| > 7. Note
that there exist other bad measurement detection methamsexemple, the normalized
infinity-norm of the residual may be used to detect the presehbad measurements [Abur

variables are usually voltage angles.
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and Expsito 2004]. In this paper, we focus on 2-Norm detector,esihis one of the most
commonly used bad measurement detectors.

The selection of- is a key issue. Assume that all the state variables are niytnal
dependent and the meter errors follow the normal distoutiit can be mathematically
shown that|z — Hx||?, denoted((x), follows ax?(v)-distribution, wherey = m — n is
the degree of freedom. According to [Wood and Wollenberg6]l,.99 can be determined
through a hypothesis test with a significance levelln other words, the probability that
L(x) > 72 is equal toa. Thus,£(x) > 72 indicates the presence of bad measurements,
with the probability of a false alarm being

2.1 Related Work

Many researchers have considered the problem of bad measuntreetection and identi-
fication in power systems (e.g., [Mili et al. 1985; Schweppale1970; Handschin et al.
1975; Monticelli and Garcia 1983; Garcia et al. 1979; Xiamgle 1982; 1983; Xiang
and Wang 1981; Quintana et al. 1982; Monticelli 1999; Magitiet al. 1986; Mili et al.
1984; Asada et al. 2005; Gastoni et al. 2003; Chen and Abus;2Zxao and Abur 2005;
Chen and Abur 2005; Zhu and Abur 2007]). Early power systesearchers realized the
existence of bad measurements and observed that a bad sreastiusually led to large
normalized measurement residual. After the presence ohteasurements is detected,
they mark the measurement having the largest normalizédusdsas the suspect and re-
move it [Schweppe et al. 1970; Handschin et al. 1975; Molliteved Garcia 1983; Garcia
et al. 1979; Xiang et al. 1982; 1983; Xiang and Wang 1981; @unia et al. 1982]. For
example, Schweppe et al. [1970] proposed to filter one meawnt having the largest
normalized residual at each loop, and then rerun the sanoegsmn the reduced mea-
surement set until the detection test is passed. Handsthin[&£975] proposed a grouped
residual search strategy that can remove all suspected dasumements at one time.

It was found that the largest normalized residual critednly worked well for indepen-
dent, non-correlated bad measurements caltedinteracting bad measuremeffionti-
celli 1999; Monticelli et al. 1986; Mili et al. 1984]. In prace, there exist correlated bad
measurements, which make the normalized residual of a gaabunement the largest.
Such bad measurements are callgdracting bad measurementshe largest normalized
residual method does not work satisfactorily in dealindgwiteracting bad measurements.
To address this problem, Hypothesis Testing Identificaftéml) [Mili et al. 1984] and
Combinatorial Optimization Identification (COI) [Montiltieet al. 1986; Asada et al. 2005;
Gastoni et al. 2003] were developed. HTI selects a set ofestisp bad measurements ac-
cording to their normalized residuals, and then decideshenean individual suspected
measurement is good or bad through hypothesis testing. €&3lthe framework from the
decision theory to identify multiple interacting bad me&snents. For example, Asada
et al. [2005] proposed an intelligent bad data identificastrategy based on tabu search
to deal with multiple interacting bad measurements.

Recently, the focus in bad measurement processing has hebe omprovement of the
robustness using phasor measurement units (PMUs) [CheAtand®006; Zhao and Abur
2005; Chen and Abur 2005; Zhu and Abur 2007]. For examplenGimel Abur [2006]
used PMUs to transform the critical measurements into réalirmeasurements such that
the bad measurements can be detected by the measuremenaléssting.

It seems that the approaches targeting at arbitrary, ictiagabad measurements (e.g.,
[Mili et al. 1984; Monticelli et al. 1986; Asada et al. 2005a&oni et al. 2003]) can also
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defeat the malicious ones injected by attackers, since switious measurements are
indeed arbitrary, interacting bad measurements. Howelespite the variations in these
approaches, all of them use the same method ((ze-; Hx|| > 7) to detect the existence
of bad measurements. Power engineers have realized therahility of this detection
approach (e.g., non-detectability of topology errors [Wid d&iu 1989]). However, to
the best of our knowledge, our attempt is the first to condidisrvulnerability from the
perspective of attackers and systematically show howlatacan bypass detection and
inject errors into the output of state estimation even if/thee restrained in accesses and
resources.

The preliminary version of this paper [Liu et al. 2009] hasaatted several research
groups to investigate how to defend against false datatiojeattacks (e.g., [Bobba et al.
2010; Sandberg et al. 2010; Kosut et al. 2010a; 2010c; 2@MAah;and Sandberg 2010]).
In particular, Bobba et al. [2010] provided a lower bound ba humber of meters that
need to be protected to thwart the attacks, Sandberg etCdl0]2ntroduced indices that
quantify the least effort needed to achieve attack goaltevelwoiding detection by defend-
ers, and Kosut et al. [2010c] proposed a Bayesian framevhatleverages the knowledge
of prior distribution on the states to detect false dataciipa attacks. All those works are
complementary to ours. It should be noted that concurremk {&obba et al. 2010] also
points to the existence of generalized false data injectttacks. However, important de-
tails such as methods to generate attack vectors and thetsngfahe attacks are missing.
In this work, we not only show that it is possible for the akis to take advantage of the
small errors tolerated by state estimation to cause exteinaigact, but also show how the
attacker can generate attack vectors for different contibims of scenarios and goals and
give a detailed analysis on the impacts of generalized tis® injection attacks.

3. FALSE DATA INJECTION ATTACKS

We assume that there arme meters that provide: measurementsy, ..., z,,, and there are
n State variablesy, ..., z,,. The relationship between thesemeter measurements and
state variables can be characterized byran n matrix H, as discussed in Section 2. In
general, the matri¥ of a power system is determined by the topology and line irapeés
of the system. How the control center construdiss illustrated in [Monticelli 1999]. We
also assume that the attacker can have access to the Hatfixhe target power system,
and can inject malicious measurements into compromisedrs&t undermine the state
estimation process.

As discussed earlier, we consider two possible attack geaislom false data injection
attacks in which the attacker aims to find any attack vector as long aan result in
a wrong estimation of state variables, aatheted false data injection attacgki® which
the attacker aims to find an attack vector that can inject aifsperror into certain state
variables. While the latter attacks can potentially causeendamage to the system, the
former ones are easier to launch, as shown in Section 5.

Besides describing the basic false data injection attae&salso use the following two
plausible attack scenarios to facilitate the discussiohan the attacker can construct
attack vectors to bypass the current bad measurementidatepproaches. Note, however,
that the false data injection attacks are not constraingtidse attack scenarios.

—Scenario | — Limited Access to Meters:The attacker is restricted to accessing some
specific meters due to different physical protections oferget For example, meters
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located in substations with physical perimeter control rhbaymuch harder to access
than those located in a locked box outside of a building.

—Scenario Il — Limited Resources Available to Compromise Metes: The attacker
is limited in the resources required to compromise meters. ekample, the attacker
only has resources to compromise upktoneters (out of all the meters). Due to the
limited resources, the attacker may also want to minimieerthmber of meters to be
compromised.

In the following, we first show the basic principle of falsetal@njection attacks. We
then focus on the two attack scenarios and show how to cansttiack vectors for both
random and targeted false data injection attacks.

3.1 Basic Principle

Let z, represent the vector of observed measurements that magircanalicious data.
za can be represented as = z + a, wherez = (z1,...,2,,)" is the vector of original
measurements anrd= (ay, ...,a,,)" is the malicious data added to the original measure-
ments. We refer ta as amttack vector Thei-th element:; being non-zero means that the
attacker compromises thigh meter, and then replaces its original measuremgewith a
phony measurement + a;.

The attacker can choose any non-zero arbitrary vector aatthaek vectom, and then
construct the malicious measuremenis= z + a. The traditional bad measurement de-
tection approach computes the 2-Norm of the measuremedtied$o check whether there
exist bad measurements or not. However, as shown in Theotmtow, such a detection
approach can be bypassed if the attack veat@s a linear combination of the column
vectors ofH.

THEOREM 1. Suppose the original measurementsan pass the bad measurement de-
tection. The malicious measuremenfs= z + a can pass the bad measurement detection
if a is a linear combination of the column vectorskfi.e.,a = He.

PROOF Xpaq, the vector of estimated state variables obtained fegnis computed by
Kpaa = (HTWH) 'H™Wz, = (HTWH) 'HTW(z + a)
= %+ (H"WH) 'H"Wa.
If a = Hc (for anyc), the 2-Norm of the measurement residual is

|Za — HRpaa|| = |z+a—-H&E + (H*WH) 'H"Wa) ||
= |z—HX + (a— HH"WH) *H"Wa)||
= |z — HX + (Hc - HHTWH) 'HTWHCc)||
= [|z—Hx + (Hc — He)|| = ||z — HX[| < 7, (4)
wherer is the detection threshold. Therefore, the 2-Norm of thesueament residual of

7 IS less than the threshold andz, can also pass the bad measurement detection. The
injected error iXpag — % = (HTWH) 'HTWa =c O

In this paper, we refer to an attack in which the attack vestequalsHc, wherec is an
arbitrary non-zero vector, adalse data injection attackBy launching false data injection
attacks, the attacker can manipulate the injected falsetddiypass the bad measurement
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detection and also introduce arbitrary errors into the wugh the state estimation (since
each element af could be an arbitrary number).

3.2 Scenario | — Limited Access to Meters

We assume that the attacker has accegsdpecific meters. Intuitively, the attacker can
only modify the measurements of thelseneters. As a result, the attacker cannot simply
choose any and usea = Hc as the attack vector. For those meters that cannot be adcesse
by the attacker, the injected errors must remain 0.

Formally, we letZ,,ctcr = {i1,...,7x} be the set of indices of the meters that the
attacker has access to. The attacker can modify measuremenivherei; € Z,cser-
To launch a false data injection attack without being detcthe attacker needs to find
a non-zero attack vectet = (as,...,a,,)? such thata; = 0 for i ¢ Z,,cer (i-€., the
attacker cannot change the meters that she cannot accdss)saa linear combination of
the column vectors df (i.e.,a = Hc).

3.2.1 Random False Data Injection Attackn a random false data injection attack,
the attacker aims to cause wrong estimation of state vasablhere the errors injected
into the wrong estimation could be any value. Thus, the lttactora should satisfy the
conditiona = (ay, ..., a,,)T = He with a; = 0 for i & T,,cter, WhereZ,, .., is the set of
indices of the meters that can be accessed by the attacker.

In the following, we develop a method for the attacker to ¢t such an attack vector.
We first show in Theorem 2 thatis redundant and can be eliminated from our formulation,
anda = Hc can be transformed into an equivalent but more straighticaviorm, which
only has one variabla. This equivalent form will allow us to easily generate aracit
vectora that satisfies the above condition.

THEOREM 2. a = Hc if and only ifBa = 0, whereB = H(HTH) 'HT — 1.

PROOF Let P = HHTH) 'HT andB = P — 1. According to [Brockwell and
Davis 1991], for anya € R™, Pa = a if and only if a is a linear combination of col-
umn vectors oH (i.e.,a = Hc). Therefore,

a=HcosPa=acsPa—-a=0& (P-T)a=0< Ba=0. (5)

This means satisfiesa = Hc if and only if it satisfiesdBBa = 0. [

Generatinga: The attacker needs to find a non-zero attack vecgarch thalBa = 0 and
a; = 0fori ¢ T,,eter. Represeniasa = (0, ...,0,a;,,0,...,0,a,,0,....0,a;,,0,...,0)T,
wherea;, , a;,, ..., a;, are the unknown variables. L& = (by,...,b,,), whereb; (1 <
1 < m) is thei-th column vector oB. Thus,

Ba=0<% (..,b;,...,bi,,....,b;,..)(0,...,0,a,0,...,0,a,,0,..,0,a;,0,..,07 = 0.

Let them x k matrix B’ = (b;,, ..., b;, ) and the lengtit vectora’ = (a;,, ..., a;, ). We
have

Ba=0<% B'a’ =0.. (6)

If the rank of B’ is less thark, B’ is a rank deficient matrix, and there exist infinite
number of non-zero solutions that satisfyB’a’ = 0 [Meyer 2001]. According to [Meyer
2001], the solution ia’ = (I — B’ B’)d, whereB’~ is the Matrix 1-inverse oB’ andd
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is an arbitrary non-zero vector of length With a non-zero solutiom’, the attacker can
generate the attack vectaiby filling O’s as the remaining elementsan

If the rank of B’ is k, thenB’ is not a rank deficient matrix arid’a’ = 0 has a unique
solutiona’ = 0 [Meyer 2001]. This means that no error can be injected ineosfate
estimation, and the attack vector does not exist. In othedsydhe attacker cannot launch
the attack. In Section 5, we show that the chance that thekattector exists increases
ask increases. Moreover, we prove in Theorem 3 that the attactovalways exists if
k>m —n.

THEOREM 3. Let k be the number of specific meters that can be accessed by the at-
tacker. Ifk > m — n, the attacker can always generate an attack vector thas&as the
conditiona = (ay, ..., a,,)" = Hewitha; = 0fori ¢ Z,,.cter., WhereZ,,qs, is the set of
indices of meters that can be accessed by the attacker.

PROOF When generating an attack vector, the attacker needs todbtike rank of
matrix B’. If rank(B’) < k, then the attack vector exists. Otherwise, the attack vecto
does not exist. Thus, in the following, we prove that it- m — n, rankB’) is always less
thank.

H is anm x n full rank matrix andP = H(HTH)'H7 is a projection matrix oH.
According to [Meyer 2001], rar®) = rankH) = n, and rankB) = rankP —I) =
m — n. Note thatB’ is a submatrix oB. Hence, rankB’) < rankB) < k.

Therefore B’ is a rank deficient matrix and there exist infinite number af-zero so-
lutions fora’ that satisfyB’a’ = 0. With a non-zero solution’, the attacker can generate
the respective attack vectamy filling 0’s as the remaining elementsan [

Whenk > m —n, the attacker does not need to compute the matBcasdB’ to obtain
the attack vector. Instead, the attacker can perform el@neocolumn operations cH to
generate the attack vector. Appendix A shows the detalils.

3.2.2 Targeted False Data Injection Attackn a targeted false data injection attack,
the attacker not only wants to inject errors into state esiion, but also wants to precisely
control the errors injected into the estimation of certdiosen state variables. In some
sense, targeted false data injection attacks can be viesvad advanced form of random
attacks.

This attack can be represented mathematically as folloesZla,iapie = {1, -5 %7}
wherer < n, denote the set of indexes of théarget state variables chosen by the attacker.
(That s, the attacker has chosen, z;,, ..., x;, to compromise.) In this attack, the attacker
intends to construct an attack vectorsuch that the resulting estimatg.q = X + c,
wherec = (c1,ca,...,c,) T andce; for i € Z,urianie is the specific error that the attacker
has chosen to inject td;. In other words, the attacker wants to replagg ..., andz;,
with Z;, + ¢;,, ..., andz;, + ¢;,, respectively.

We consider two cases for the targeted false data injectianka A constrainedand an
unconstrainectase. In the constrained case, the attacker wants to lautacheded false
data injection attack that only changes the target staiablas but does not pollute the
other state variables. The constrained case represersisitaton where the control center
(software or operator) may know ways to verify the estimafethe other state variables.
In the unconstrained case, the attacker has no concerneampact on the other state
variables when attacking the chosen ones. In the following,show how an attacker
generates an attack vector for the constrained and uneoredrcases, respectively.
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Constrained Case:The construction of an attack vectarbecomes rather simple in the
constrained case. The error injected into the estinfatéstate variablesis. LetZ,q iapie
denote the set of indexes of the target state variables ohuysthe attacker. Every element
¢; in cis fixed, which is either the chosen value when Z,-iqpie, O OWhen & T, .iabie-
Therefore, the attacker can substitatback intoa = He, and check ifa; = 0 for all 7 ¢
Tmeter- T yes, the attacker succeeds in constructing the (ontgcktvectora. Otherwise,
the attack is impossible.

Unconstrained Case:To launch a targeted false data injection attack in the ustcaimed
case, the attacker need to generate an attack vectioat satisfies the following three
conditions: (1)a = Hc; (2) a; = 0 for all i ¢ Z,,,c1,; @and (3)¢; of ¢ is the specific value
chosen by the attacker, wheires Z,...ape- TO generate such an attack vector, we first
show thata = Hc can be converted into an equivalent form without havwin@nd then
generatea based on the equivalent form.

THEOREM 4. a = Hc if and only if Bga = y, whereBy; = H(HIH,)*HT — 1,
H; is the submatrix oH containing columns whose indices are notZif,iqpie, b =
Zjezvariable hjcj, andy = Bsb.

PROOF Assume that the number of target variables.isLet cs = (cj,, ..., cj, )7,
wherej; ¢ Zyariapie for1 <i<n —r.

a=Hc & a= Z h;c; + Z hjc; = Hscs +b & a—b = Hgeg
i¢Zvariable J€Tvariable
& H(HTH,)'HI(a - b) =H,(HTH,) 'H H.c, =H.c;,=a—b
<~ Hs(HsTHs)_leT - I)a = (HS(HEHS)_lHE - I)b
< Bga=Bb < Ba=y. @)

Hence a satisfiesa = Hc if and only if a satisfiedBgsa =y. O

Generatinga: The attacker needs to find an attack vecicsuch thatBsa = y where
a; = 0fori ¢ Z,,cer. There arek unknown elements im at positionsiy, ..., i,. We
follow the same reasoning as in Section 3.2.1 to dei8jte= (b, ,...,bs, ) anda’ =

(a;,,...,a;,)T. Then we have
Bla'=y < Bsa=y. (8)

If the rank of B/, is the same as that of the augmented mafB%|y), B.a' =y is
a consistent equation, and there exist infinite solutiwns B."y + (I — B, B.)d that
satisfyBLa’ =y, whereB’ is the Matrix 1-inverse oB’, andd is an arbitrary non-zero
vector of lengthk [Meyer 2001]. The attacker can generate an attack vecfoom any
a’ #£0.

If the rank of B, is not the same as the rank of the augmented mé&B[}y), then the
relationBLa’ =y is not a consistent equation, and thus has no solution. Te@mthat
the attacker cannot generate an attack vector to injectpeeifge errors into the chosen
state variables.

How the attacker chooses specific erreydor j € Z,q4riqne affects the feasibility of
launching targeted attacks. Note that- Bsb =Bs) ;7 hjc;. If the attacker

chooses; such thatBs >, h;c; is a linear combination of columns @ or
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Bs) ez, h;c; = 0, then the rank of the augmented matfB.|y) is the same as
that ofB’ ‘and the attacker can generate an attack vector. Othenhseattacker cannot
generate an attack vector.

3.3 Scenario Il — Limited Resources Available to Compromise Meters

In Scenario Il, we assume the attacker has resources to oamg® up tok meters. Unlike
Scenario |, there is no restriction on what meters can beerhoBSor the sake of presen-
tation, we call a lengthr vector ak-sparse vectoif it has at most: non-zero elements.
Thus, the attacker needs to find-aparse, non-zero attack vectothat satisfies the rela-
tiona = He. As in Scenario |, we consider both random and targeted &t injection
attacks in Scenario Il.

Note that the existence conditions of the attacks followsu@e criteria as in Scenario
I. Thus, we focus on investigating how the attacker can cooséattack vectors.

3.3.1 Random False Data Injection AttackVith the resources to compromise up to
k meters, the attacker may use a brute-force approach toraonah attack vector. That
is, the attacker may try all possibdés consisting oft unknown elements and. — & zero
elements. For each candidaigthe attacker may check if there exists a non-zero solution
of a such thatBa = 0 using the same method as discussed in Section 3.2.1. Iftyes, t
attacker succeeds in constructing an attack vector. Otbenthe attacker has to try the
next candidate. However, the brute-force approach couti®consuming. In the worst
case, the attacker needs to exan(ﬁjjé candidate attack vectors.

To improve the time efficiency, the attacker may take adygmt the following obser-
vation. Since a successful attack vector is a linear contibimaf the column vectors dft
(i.e.,a = Hc), the attacker can perform column transformationHtm reduce the number
of non-zero elements in the transformed column vectors.hisspgrocess continues, more
column vectors in the transformé&di will have fewer non-zero elements. The column vec-
tors with no more that: non-zero elements can be used as attack vectors. In particul
when the matriXH is a sparse matrix (which is usually the case in real powdegsys), it
does not take many column transformations to constructisadhés attack vector.

A Heuristic Approach: We give a heuristic approach to exploit this observatione Th
attacker can initialize a sizepriority queue with the: column vectors oH. The attacker
then repeats the following process: Take the column vectith the minimum number
of non-zero elements out of the queuet i§ ak-sparse vector, the algorithm returns and
can be used as the attack vector. If not, for each column vedtathe queue, the attacker
checks if linearly combining ands can result in a column vector with less zero elements
thant. If yes, the attacker appends the resulting vector to theigu€he attacker repeats
this process until &-sparse vector is found or the set is empty. It is easy to saettr
sparse vector constructed in this way must be a linear catibmof some column vectors
of H, and can serve as an attack vector.

The heuristic approach could be quite slow for a genEralHowever, it works pretty
efficiently for a sparse matriM, which is usually the case for real-world power systems.
For example, in our simulation, whén= 4 in the IEEE 300-bus test system, it takes the
heuristic approach about 110ms on a regular PC to find arkatéeator.

The heuristic approach does not guarantee the construsftian attack vector even if
it exists, nor does it guarantee the construction of an lattactor that has the minimum
number of non-zero elements. Nevertheless, it runs pretokly when it can construct an
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attack vector, and thus could still be a useful tool for thacker.

Ideally, in order to reduce the attack costs, the attackardvlike to compromise as
few meters as possible. In other words, the attacker watiitsdahe optimal attack vector
a with the minimum number of non-zero elements. The attackay use the brute-force
approach discussed at the beginning of Section 3.3.1bking 1 initially, and gradually
increasek until an attack vector is found. Apparently, such an attae&ter gives the
optimal solution with the minimum number of compromised enst There are possibilities
to improve such a brute-force approach, for example, usinigary search in identifying
the minimumk.

3.3.2 Targeted False Data Injection AttackVe follow the notation used in Scenario
| to describe the targeted false data injection attack. ZLgf;apie = {41, ..., %}, Where
r < n, denote the set of indexes of thearget state variables chosen by the attacker. In
this attack, the attacker intends to construct an attactovecto replacez; , ..., andz;,
with z;, +¢;,, ..., andz; + ¢, , respectively, where;, , ..., ¢;, are the specific errors to be
injected. Similar to Scenario I, we consider both consediand unconstrained cases.

Constrained Case: As discussed earlier, in the constrained case, the attaulesds to
only change the estimation of the chosen target state Vesiabut does not modify the
others. Thus, all elements ofare fixed. So the attacker can substitatiato the relation

a = Hec. If the resultinga is a k-sparse vector, the attacker succeeds in constructing the
attack vector. Otherwise, the attacker fails. The attaakorederived in the constrained
case is the only possible attack vector; there is no way tindareduce the number of
compromised meters.

Unconstrained Case:ln the unconstrained case, only the elements c for i € Z,4.sab1¢

are fixed; the othet; for j ¢ Z,.rianie Can be any values. According to Equation (7),
a=Hc < Bsa=y. (Note that the derivation of Equation (7) does not assunye an
specific compromised meters. Thus, Equation (7) also haldlse unconstrained case in
Scenario l.)

To construct an attack vector, the attacker needs to fikeparse attack vectar that
satisfies the relatiolBsa = y. A closer look at this problem reveals that it is thini-
mum Weight Solution for Linear Equations problg&arey and Johnson 1979], which is
an NP-Complete problem: Given a matéxand a vectob, compute a vectax satisfying
Ax = b such thatx has at mosk non-zero elements. Several efficient heuristic algo-
rithms have been developed to deal with this problem, fomgte, the Matching Pursuit
algorithm [Natarajan 1995; Pati et al. 1993; Lovisolo et2805], the Basis Pursuit algo-
rithm [Chen 1995; Georgiev and Cichoki 2004], and the GraidRursuit algorithm [Blu-
mensath and Davies 2008]. The attacker can use these hfgsrib find a near optimal
attack vector. In our simulation, we choose the MatchingsBitialgorithm, since it is
the most widely used algorithm for computing the sparsealigepresentations and has
exponential rate of convergence [Huggins and Zucker 2007].

The attacker may want to minimize the number of meters to bgcomised, i.e., to find
an attack vectoa with the minimum number of non-zero elements that satigfiesHc
such that the chosen elementscirhave the specific values. This problem is the MIN
RVLS™ problem [Amaldi and Kann 1998]: Given a mattx and a vectob, compute a
vectorx satisfying Ax = b such thatx has as few non-zero elements as possible. The
Matching Pursuit Algorithm can again be used to find an att@dkor, since this problem
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is the optimization version of the minimum weight soluti@m finear equations problem.

3.4 Impact Analysis

In this subsection, we analyze the impact introduced byefdita injection attacks. Note
that the analysis is not limited to the two scenarios disedigzarlier. Instead, it applies to
any false data injection attacks that inject errors inttestariables through compromised
meter measurements.

3.4.1 Problem Formulation.Since the state estimation problem is commonly solved
as a weighted least squares problem [Monticelli 1999], #etork,.q of the estimated
state variables obtained from observed measuremgrian be represented as

Kpaa = (HTWH) THTWz,, %)

whereW is a diagonal matrix whose elements are reciprocals of thanges of meter
errors. (See Section 2.) Therefore,

|12 — HRbadl|=|HRbad — za|=(|(HHTWH) "H*W —I)(z + a)||=|F(z + a)],

whereF = HHTWH) *HTW — 1. If |Fa| = 0, ||za — HXpaa|| = ||Fz|| = ||z —
Hx/||. On the other hand, it follows from Equation (9) that

[Rbaa — %[| = [(H*WH) " "H*W (z + a) — (H"WH) " "H"Wz|| = ||Qal,

whereQ = (HTWH) 'HT™W. AssumeZ,,cic, = {i1,...,ir} is the set of indices of
meters that are compromised by the attacker. Further repr€sasF = (fi,....f,).
Since the attacker can only inject errors into the meteitsstiia compromises (i.ez; = 0
fori ¢ Tpeter), |Qall = [|Q’a’|| and||Fal| = 0 < ||F'a’|| = 0, whereF’ = (f;,, ..., f;, ),
Q' = (ai,,-q,), anda’ = (a;,, ..., a;, )" LetToariabie = {j1, ---, j» } denote the set of
indexes of target state variables chosen by the attackgf,;{,. consists of the indexes
of all state variables when the attacker does not targetyasgecific state variables.) The
error introduced by the attacker can be obtained by soliegfollowing optimization
problem:

Maximize ||Q"a’||
s.t. |F’a’|| =0,
whereQ” is a submatrix ofQ’ and is formed by thg; -th,...;j,-th row of Q'.

3.4.2 Injected Error. Note that wher¥”’ is a full rank matrix (i.e., RanKF’) = k),
|[F’a’|| = 0 has a unique solutioa’ = 0 [Meyer 2001]. Therefore|Q”a’|| = 0 and no
error can be injected into the state estimation. Howeveen#t is a rank deficient matrix
(i.e., Rank(F’) < k), the amount of introduced error is unbounded as shown iofEme 5.

THEOREM 5. For false data injection attacks, if Rar{’) < k, the maximum of the
2-Norm of error an attacker can introduce to the outcome atfesestimation is unbounded.

PROOFR We need to maximiz¢Q”a’|| under the condition thatF’a’|| = 0. If F
is a rank deficient matrix, there exist non-zero solutiahghat satisfyF’a’ = 0 and
a’ = (I- F~F')d, whereF’~ is the Matrix 1-inverse oF’ andd is an arbitrary non-
zero vector of lengttk. Thus,||Q”a’|| = [|Q”[(I — F'~F’)d]||. Note thatd can be any
non-zero vector. Therefore, the 2-Norm of injected efi@f'a’|| is unbounded. [
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4. GENERALIZED FALSE DATA INJECTION ATTACKS

In this section, we extend false data injection attacks tersetplized version, which we
referred to ageneralized false data injection attackihe primary objective is to see if an
attacker can achieve higher impacts by taking advantageea$rhall measurement errors
typically tolerated by state estimation algorithms.

As for false data injection attacks, we consider b@hdom andtargetedgeneralized
false data injection attacks. In random generalized fad¢a ihjection attacks, the attacker
aims to mislead the control center to get wrong estimatesaté variables, whereas in
targeted generalized false data injection attacks, tlaelast aims to make the estimates
of selected state variables to be specific values. For baoiltiora and targeted false data
injection attacks, we show how an attacker constructs aclattector in Scenarios | and
I, respectively.

4.1 Basic Principle

Similar to false data injection attacks, we consider a paystem consisting ol meters
andn state variables for generalized false data injection lestaRecall that the compro-
mised measurementg can be represented 2§ = z+ a, wherez is the vector of original
measurements ardis the attack vectoky,.q, the estimated state variables obtained from
Z,, Can be represented &st ¢, wherec is the introduced error arglis the true estimate.
Therefore, the 2-Norm of the measurement residual,a$

|Za — Hpaa| = ||z +a— H(% + c)]|
= |z — HX + (a — Hc)||
|z — HX[| + [|(a — H)|.

Let 7 denote the detection threshold and= 7 — ||z — HX||. If ||a — Hc|| < 7, then
|lza — HXpaa|| < 7 and the attacker can bypass the detection. We refer to askatta
which the attack vectau satisfies|a — Hc|| < 7, as a generalized false data injection at-
tack. That s, in false data injection attacks, the attackorex should satisfy the condition

|la = Hc|| = 0, while the generalized false data injection attacks refés ¢condition so
that any vecton that satisfiega — Hc|| < 7, can be used as the attack vector.

N

4.2 Scenario | — Limited Access to Meters

Let Zeter = {i1, ..., i } represent the set of indices of theneters whose measurements
can be compromised by the attacker. Thus, the attacker darcliange the measurement
of thei;-th meter to a wrong value, wheig € Z,,¢ter.

4.2.1 Random Generalized False Data Injection Attackssumea — Hc = t, where
t is a lengthm vector that reflects the difference betweeandHc. The attacker can by-
pass detection as long és|| = ||a — Hc|| < 7,. In random generalized false data injec-
tion attacks, the vectar (i.e., the errors introduced to the state variables) campealue.
Note thata can be represented as= (0, ...,0,a;,,0,...,0,a;,,0, ...,0,a;,,0,...,0)T,
wherea;, , a;,, ..., a;, are the unknown variables to be determined. Following Eqoa{(5)
and (6), we can obtain an equivalent form of the relation t = Hc as follows:

a—t=Hc< Bla—t) =0« Ba=Bt < B'a’ =Bt. (10)

whereB = (bl, 7bm) = H(HTH)ilHT —-1,B' = (bil, ...,bik), a = (CLil, . aik)T,
andt is a vector whose 2-Norm is less than(i.e., ||t|| < 7.). Thus, the attacker can solve
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a’ from equationB’a’ = Bt to get the attack vectear. Details are given in Appendix B.

4.2.2 Targeted Generalized False Data Injection AttacBy. launching targeted gen-
eralized false data injection attacks, the attacker irggndnject specific errors into the
estimation of chosen state variables, while resulting ialsresiduals. We also consider
both constrained and unconstrained cases.

In the constrained case, the attacker modifies the targetatdables but keeps the other
state variables unchanged. Note that the introduced eri®a fixed vector, and thus the
attacker can directly substituteinto a = Hc + t and adjust to obtain the attack vector
a. Specifically, the attacker can first use a zero vector asitialit = (1, ...,t,,)7. Let
f=(f1,.,fm)! =Hec. Forl <i <m,if f; # 0andi ¢ Z,,cr, then the attacker can
sett; to — f;. Finally, the attacker checks whether the 2-Norm of the tgatfais less than
T, Or not. If yes, the attack vector equalshix + t. Otherwise, the attack vector does not
exist.

In the unconstrained case, the attacker modifies the tataget wariables without any
concern about the impact on the other state variables. Té@monly the elements of
cfori € Zyurianie are fixed and the other elementsfor j ¢ Z,riqn1 Can be any values,
where Z,oriapie = {i1,...,%-} denote the set of indexes of thetarget state variables
chosen by the attacker. Note that-t = Hec =37 hic;+3 .7 hjc;.

hjc; andHg = (h;,,...,h;, 3§ wherej; ¢ Tyariapie TOr 1 < i <

n—r. Followmg Equat|ons (7) and (8), — t = Hc can be transformed into the following
equivalent forms:

a—t=Hc & Bg(a—t) =Bsb < Bsa=Bg(t+b) & Bla’' = Bs(t + b), (11)

where B = (bg,,...,bs,) = Hy(H{H,) "HY - T, B = (bs, ,...,bs, ), a =
(Wiyy ooy aik)T, andt is a vector whose 2-Norm is less than Hence, the attacker can

solvea’ from equationB.a’ = Bst + Bb to get the attack vecter. Details are given in
Appendix C.

4.3 Scenario Il — Limited Resources Available to Compromise Meters

In Scenario I, the attacker can compromise ug: tmeters, but there is no restriction on
what meters can be compromised. The attacker needs to firgparse, non-zero attack
vectora that satisfies the inequalitya — Hcl| < 7,.

For random generalized false data injection attacks amgetaad generalized false data
injection attacks in unconstrained case, the attackersneefind ak-sparse vectoa that
satisfies equatioBa = Bt andBsa = B(t + b), respectively. The attacker can directly
reduce the problem to the Minimum Weight Solution for Lin&auations problem by
using any vector with 2-Norm less than or equati@st. After the reduction, the attacker
can take advantage of existing algorithms such as MatchimguR [Natarajan 1995; Pati
et al. 1993; Lovisolo et al. 2005], Basis Pursuit [Chen 199&orgiev and Cichoki 2004],
and Gradient Pursuit [Blumensath and Davies 2008] to fiksparse solution for equation
Ba = Bt orBsa = Bs(t + b).

For targeted generalized false data injection attacksnstcained case, the attack vector
a should be &-sparse vector that satisfias= Hc + t. Note that the introduced errer
is a fixed vector. Thus, iHc is k-sparse, theh = 0 anda = Hc. Otherwise, assume that
there arey (k < ¢ < m) non-zero elements iflc. The attacker first adjustssuch that
q — k non-zero elements iHc can be canceled whenis added tdHc, and then checks
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whether the 2-Norm of is less than or equal tg,. If yes, Hc + t is an attack vector.
Otherwise, the attack vector does not exist.

4.4 Impact Analysis

In this subsection, we analyze the impact introduced by igdized false data injection

attacks, particularly the additional errors beyond thég{oal) false data injection attacks.
Note that our results are not limited to the above two attaelnarios, but are applicable
to any generalized false data injection attacks, whergse injected into a set of state
variables through a set of compromised meters.

4.4.1 Problem Formulation.According to Section 3.4.1|Xpaa — X|| = [|Qa|l =
|Q"a||. Note that

1Za — HRpada || = [|F(z + a)[| < [[Fz|| + [[Fal],

whereF = HHTWH) 'HT™W - 1. Letr, = 7 — |Fz|. If |Fa|| < 7., then||z, —
HxXpaal| < 7. Therefore, the error introduced by the attacker can berwdleby solving
the following optimization problem:

Maximize|Q"a’||
s.t. |F'a’|| < 7,.

4.4.2 Injected Error. When Rank’F’) < k, the amount of error injected by false data
injection attacks is unbounded. Note that generalize fdiga injection attacks include
false data injection attacks, and thus the amount of ertaydoced by generalized attacks
is also unbounded.

When Rank(F') = Fk, the original false data injection attacks cannot intradaoors
to the output of state estimation, as discussed in Sectintowever, as shown in The-
orem 6, generalized false data injection attacks can sf#ict non-zero errors, and the
2-Norm of the injected errors is bounded by a constant.

THEOREM 6. Suppose RankF') = k. In generalized false data injection attacks,
the maximum of the 2-Norm of injected error7igy/Apaz, Where ... is the largest
eigenvalue of matriD = [/(F/TF)T]|-1(Q"TQ")(VF'TF/)~ 1.

PROOF In generalized false data injection attacks,
|Q"a|? = a™(Q"TQ")a’ (12)
and
|[F’a’||2 = a'T (F'TF)a’. (13)

F'TF’ is a non-singulak x k matrix, sinceF’ is full rank. Letw = VF'TF’a’. Thus,
a’ = (VF'TF')~lw. Substitutingw = VF'TF’a’ anda’ = (VF'TF’)~lw into equa-
tions (12) and (13), we can obtain

HQIIa/”2 _ WT[ (F’TF’)T]fl(Q"TQ”)(\/W)flw,

and

|F'a’||? = wT[/(FTF)T| " L(VFTF)w = wTw.
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LetD = [\/(F/TF)T]"1(Q"TQ")(VF'TF’)~1 andy = ¥. Thus,

1Q"a'||? = wTDw = 77(y T Dy) (14)
and
[F'a’||? = wTw = 72(yTy).

Therefore, the maximum amount of injected error can be nbthby solving the following
optimization problem:

Maximize yTDy
S.t. yTy < 1.

Note thaty # 0 and matrixD is a symmetric matrix (i.,e DT = D). Let \,,,, and
Vmax denote the largest eigenvalueBfand the eigenvector associated with the largest
eigenvalue, respectively. According to the Rayleigh-Riteorem [Golub and Van Loan
1989], yTDy < Mneay¥ Ty, andyTDy = Moy Ty Wheny = vmax. The eigenvec-
tors of matrixD are orthogonal to each other, sirPeis a symmetric matrix [Golub and
Van Loan 1989]. Henceyr, . Vmax =1 and the maximum value gf "Dy equalsh,,q..
Substitutingh,,,... into Equation (14), we can obtain the maximum error

max ||Q"a’|| = Ta v/ Mnaz (15)
with 2’ = (VETF) lw= (VFTF) ' ray= (VETF) “avmax. [

We have presented false data injection attacks and theajeeekrversions in this and the
previous sections. In the following, we summarize in Taklleel main results, particularly
the attack existence conditions, to facilitate the undading of the overall situation.

5. EXPERIMENTAL RESULTS

In this section, we validate both original and generalizésd data injection attacks through
experiments using IEEE test systems, including the IEERISQ-44-bus, 30-bus, 118-
bus, and 300-bus systems. The IEEE 9-bus, 14-bus, 30-bdsl 1&8ibus represent por-
tions of American Electric Power System (in the Midwester8)lh the early 1960’s,
while the IEEE 300-bus system was developed by the IEEE Teste®s Task Force in
1993 [Christie 1999].

In our experiments, we simulate attacks against state astimusing the DC power
flow model. We extract the configuration of the IEEE test systéparticularly matrix)
from MATPOWER, a MATLAB package for solving power flow problerfzimmerman
and Murillo-Sanchez 2007 We perform our experiments based on makfixand meter
measurements obtained from MATPOWER. For each test systenstate variables are
voltage angles of all buses, and the meter measurementsairpawer injections of all
buses and real power flows of all branches.

5.1 Obijectives of Experimental Evaluation

For false data injection attacks in Scenario I, we have shibnahthe attacker cannot al-
ways generate valid attack vectors to inject random (oriipgerrors into estimates of all

2In MATPOWER, the shift injection vector is set @for state estimation to use the DC power flow model.
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Table I. Summary of original and generalized false data igadittacks

Attacks Scenarios Goals Attack existence condition
Random B'a'=0, B'is rank deficient
Limited access to . s
Targeted constrained a=Hc, cis fixed
meters
Basic false . ) ' "
. Targeted unconstrained B 'a'=y, rank(B,')=rank(B,'ly)
ata
injection .
Random Ba=0, aisk-sparse
attacks
Limited resources | Targeted constrained a=Hc, cis fixed
Targeted unconstrained B.a=y, aisk-sparse
Random B'a'=Bt, it <7,
Limited access to Lo
Targeted constrained a=Hc+t ,cis fixed and [Itll <7,
meters
Generalized
Targeted unconstrained B /'a'=B (t+b), lIitI< 7,
false data
injection
! Random Ba=Bt, litll<7,,and ais k-sparse
attacks
Limited resources | Targeted constrained a=Hec+t, cis fixed and It <7,
Targeted unconstrained | B,a=B_(t+b), lItl < 7, anda is k-sparse

state variables (or target state variables). Thereforeuirexperiments, we are primarily
interested in the possibility of generating valid attacktees, and show how likely the
attacker can find valid attack vectors to attack the IEEESgstems.

For false data injection attacks in Scenario Il, we pointed that generating attack
vectors for Scenario Il is an NP-complete problem. Althoitgbeems difficult for the
attacker to find an optimal attack vector in Scenario Il dutheoNP hardness, we would
like to check experimentally if the attacker can take adagatof existing tools to find
a near-optimal attack vector within a practical time windoWe also want to see the
minimum effort the attacker needs to spend compromisingraén order to launch false
data injection attacks.

For generalized false data injection attacks, wRéis a rank deficient matrix, both false
data injection attacks and their generalized versions chieze similar impacts. However,
whenF' is a full rank matrix, an attacker cannot launch false dajection attacks but
can launch generalized attacks (Theorem 6). Thereforeiriexperiments for generalized
attacks, we focus on the latter situation (i.B!,is a full rank matrix). We would like
to investigate how much the attacker can affect the outpgtaie estimation even if the
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attacker fails to launch false data injection attacks.

5.2 False Data Injection Attacks: Scenario |

As mentioned earlier, in Scenario 1, the attacker is limi@adccessing: specific meters.
In other words, the attacker can only modify the measuresnehthesek meters. Our
evaluation objective in this scenario is mainly two-foldrsE we would like to see how
likely the attacker can use thesemeters to achieve her attack goal. Second, we want to
see the computational effort required for finding an attaekter. In our evaluation, we
consider (1) random false data injection attacks, (2) tadyalse data injection attacks in
the unconstrained case, and (3) targeted false data mjesttiacks in the constrained case.

Based on our evaluation objective, we use two evaluatiomiosettheprobability that
the attacker can successfully construct an attack veotendhek specific meters, and the
execution timeequired to either construct an attack vector or conclude tte attack is
infeasible.

We perform the experiments as follows. For random false oigégtion attacks, we
let the parametekt range from 1 to the maximum number of meters in each testrayste
(For examplefk ranges from 1 to 490 in the IEEE 118-bus system.) For éaate ran-
domly chooseé: specific meters to attempt an attack vector construction.réfeat this
process 100 times for both IEEE 118-bus and 300-bus systath4,200 times for the
other systents and estimate thsuccess probability;, asp, = #successhulinals

Let R, denote the percentage of the specific meters under the et®clontrol (i.e.,

k J- Figure 2 shows the relationship betwegrand ;. for random false data injection

# meter:
attacks. We can see thpt increases sharply a3, becomes larger than a certain value

in all systems. For example,. of the IEEE 300-bus system increases quickly wiign
exceeds 20%. Moreover, the attacker can generate the attatde with the probability
close to 1 wherz;, is large enough. For exampleg, is almost 1 wherR;, passes 60% and
40% in the IEEE 118-bus and 300-bus systems, respectivelglly; larger systems have
higherp, than smaller systems for the samflg. For examplep,, is about 0.6 for IEEE
300-bus system and 0.1 for IEEE 118-bus system when thékattaan compromise 30%
of the meters in both systems.

For targeted false data injection attacks in the uncomsthtase, we also let the param-
eterk range from 1 to the maximum number of meters in each testraysted perform the
following experiments for each. We randomly pick 10 target state variables for each test
system (8 for the IEEE 9-bus system, since it only has 8 statiahles). For each target
state variable, we use twice its real estimate as the irjesster and perform multiple trials
(1,000 trials for the IEEE 9-bus, 14-bus, and 30-bus systé@Gtrials for the IEEE 118-
bus system, and 20 trials for the IEEE 300-bus system)each trial, we randomly choose
k meters and test if an attack vector that injects false datetims target variable can be
generated. If yes, we mark the experiment as successfur &fese trials, we can com-
pute the success probability , for this particular state variableaspy, , = #Successiul trials

# trials
Finally, we compute the overall success probabijlifyas the average gf; ,'s for all the

3|t takes significantly more time to exhaustively examine theBBE8-bus and 300-bus systems with all possible
k’s. We reduce the number of trials for them so that the simulatam finish within a reasonable amount time.
41n this case, it take even more time than random false datatimjeattacks to exhaustively examine the IEEE
118-bus and 300-bus systems with all possite Thus, we reduce the number of trials for these two systems
so that the simulation can finish within a reasonable amount time
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Fig. 2. Probability of finding an attack vecFig. 3. Probability of finding an attack vec-
tor for random false data injection attacks tor for targeted false data injection attacks
(unconstrained case)

chosen state variables.

Figure 3 shows the relationship betwegnand R, for targeted false data injection
attacks in the unconstrained case. We observe the samertrthisl figure as in Figure 2,
though the probability in this case is in general lower tHaat tn Figure 2. For example,
pr increases sharply a3, passes 60% for both the IEEE 118-bus and 300-bus systems.
Moreover, for both systems, the probability that the attacan successfully generate the
attack vector is larger than 0.6 whé?), passes 70%. For targeted false data injection
attacks, larger systems also tend to have highdhan smaller systems for the saifig.

It is critical to note that Figures 2 and 3 represent the sgpeobabilities of “blind
trials”. In this case, an attacker needs to compromise 3&-G0the meters to get a rea-
sonable probability to construct an attack vector. Howeagshown later in Section 5.3.1,
when an attacker targets the “weakest link” of a power syssta only needs to compro-
mise a few meters in these test systems.

The targeted false data injection attack in the constragase is the most challenging
one for the attacker. Due to the constraints on the specifiensighe targeted state vari-
ables, and the necessity of no impact on the remaining staitables, the probability of
successfully constructing an attack vector is in fact vamal§ though non-zero. We per-
form experiments for this case slightly differently. We damly pick 6 sets of meters for
the IEEE 118-bus and 300-bus systems. In each set, ther&@meers and 700 meters
for the IEEE 118-bus and 300-bus systems, respectively. h&le theck the number of
individual target state variables that can be affected loh sat of meters without affecting
the estimation of the remaining state variables. The reshliow that the attacker can af-
fect 8—11 and 13-16 individual state variables in the IEE&-fids and 300-bus systems,
respectively. Thus, though the targeted false data imjeetitack in the constrained case is
hard, it is still possible to modify some target state vadgab

In Scenario |, all attacks can be performed fairly quickly. &tihe attack is feasible, it
takes little time to actually construct an attack vectotbl@dl shows the execution times
required by the random and the targeted false data injeatiawcks in the unconstrained
case. The time required for the targeted false data injeetitack in the constrained case is
even less, since the computation is just the multiplicatiba matrix and a column vector.
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Table Il.  Timing results in Scenario | (ms)
Test system | Random attack Targeted attack
(unconstrained)
IEEE 9-bus 0.17-2.4 0.21-2.2
IEEE 14-bus 0.16-5.6 0.26-11.3
IEEE 30-bus 0.35-14.9 0.24-31.4
IEEE 118-bus| 0.34-867.9 0.42-1,874.5
IEEE 300-bus| 0.55-8,549.6 | 0.73-18,510

23

For example, the time required for the IEEE 300-bus systemgesfrom 1.2ms to 11ms.

5.3 False Data Injection Attacks: Scenario Il

In Scenario Il, the attacker has resources to compromise kprieters. Compared with
Scenario |, the restriction on the attacker is relaxed inséngse that any meters can be
used for the attack. Similar to Scenario |, we would also fikeee how likely the attacker
can use the limited resources to achieve her attack goalaiatite same time, examine
the amount of computation required for attacks. We use tvaduetion metrics in our
experiments: (1) number of meters to compromise in ordeptwsttuct an attack vector,
and (2) execution time required for constructing an attator.

Due to the flexibility for the attacker to choose differenttare to compromise in Sce-
nario I, the evaluation of Scenario Il generally requiresrenexperiments to obtain the
evaluation results. In the following, we examine (1) rand@ise data injection attacks,
(2) targeted false data injection attacks in the constchgase, and (3) targeted false data
injection attacks in the unconstrained case, respectively

5.3.1 Results of Random False Data Injection AttackRandom false data injection
attacks are the easiest among the three types of attacks evalaation, mainly due to
the least constraints that the attacker has to follow. Wéop®mra set of experiments to
construct attack vectors for random false data injectiteccis in the IEEE test systems.
We assume the attacker wants to minimize the attack costripimmising as few meters
as possible. This means the attacker needs to find the atabtsrihaving the minimum
number of non-zero elements.

The brute-force approach is too expensive to use for findiredp &in attack vector due
to its high time complexity. Thus, in our experiments, we tlse heuristic algorithm
discussed in Section 3.3.1 to find an attack vector that hassmmimum number of non-
zero elements for the IEEE test systems.

Table Ill. Random false data injection attacks
Test system | # metersto | Execution time (ms)
compromise

IEEE 9-bus 4 0.88

IEEE 14-bus 4 3.47

IEEE 30-bus 4 4.31
IEEE 118-bus 4 19.58
IEEE 300-bus 4 110.51

Table 11l shows the results. In all test systems, the numibenaters that need to be
compromised is surprisingly small. For all test systems, dttacker can construct an
attack vector for random false data injection attacks by eompromisingd meterswith
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execution time ranging from 0.88ms to about 110ms. We look&mlthe experimental
data, and found that this is mainly due to the fact thaftiheatrices of all these IEEE test
systems are sparse. For example Hhmatrix of the IEEE 300-bus systemis a 1,32300
matrix, but most of the entries are 0’s. In particular, tharspst column ifH only has 4
non-zero elements. This column is selected by the algordhkrthe attack vector. Note
that power systems with sparBEmatrices are not rare cases. In practice, components in
a power system that are not physically adjacent to each atkarsually not connected.

5.3.2 Results of Targeted False Data Injection Attacks in Corniséd Case.Similar
to Scenario |, targeted false data injection attacks in thesttained case are the most
challenging one among all types of attacks due to all thetcainss the attacker has to
follow in attack vector construction. In the constrainedesahe attacker aims to change
specific state variables to specific values and keep the namgestate variables as they are.

In our experiments, we randomly chookél < [ < 10) target state variables and
generate the specific errors for each of them. The specific Brset to be twice as much
as the real estimates of the state variables. We then exdmimenany meters need to
be compromised in order to inject the specific errors (withthanging the other non-
target state variables) into target state variables. Fdr ealue ofl, we perform the above
experiment 1,000 times to examine the distribution of theler of meters that need to be
compromised.

Figure 4 shows the results of the IEEE 300-bus system. We lmx @lof to show
the relationship between the number of target state vasadohd the number of meters to
compromise. In the worst case, to inject specific errorsastmany as 10 state variables,
the attacker needs to compromise 55-140 meters in the IEEGB3BOsystem. Given 1,122
meters in the IEEE 300-bus system, the attacker only neemsnpromise a small fraction
of the meters to launch targeted false data injection aitagkn in the constrained case.

We also exhaustively examine a special situation of tacyfstise data injection attacks
in the constrained case. Specifically, for each state Variale examine the number of
meters that need to be compromised if the attacker aimssatahiable. Figure 5 shows the
results. We can see that the attacker can inject specificsano any single state variable
using less than 35 meters for the IEEE 118-bus system anthesg0 meters for the IEEE
300-bus system. For all systems, the median values of thé@&uofi compromised meters
is around 10.

In the constrained case, sinecas fixed, the attack vectors can be directly computed.
Thus, the execution time in all the experiments is very shBdr example, it costs only
0.45ms on the test computer to generate an attack vectanjbetss false data into 10 state
variables in the IEEE 300-bus system.

5.3.3 Results of Targeted False Data Injection Attacks in Unaairsed Case.In the
unconstrained case, the attacker wants to inject specificsanto specific state variables,
but the attacker does not have to keep the other state wesiablchanged. As discussed
in Section 3.3.2, we use the Matching Pursuit algorithm @ixegan 1995; Pati et al. 1993;
Lovisolo et al. 2005] to find attack vectors. We perform thmeaet of experiments as in
Section 5.3.2 to obtain the two evaluation metrics: the nemab meters to compromise
and the execution time. Note that in the unconstrained @ds&es significantly more time

5In these box plots, each box shows the first, the second artlitdeguartiles. The whiskers that extend from
the box cover the minimum and maximum points.
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to construct an attack vector than the previous experim@digs, we show more detailed
results on execution time in this case.

Figure 6 shows the relationship between the number of me&arempromise and the
number of specific state variables to compromise for the IBBE&bus system. Figure 7
shows the corresponding execution time of the Matching Wuedgorithm for finding
an attack vector successfully. We can see that the attaelesisrto compromise 60-140
meters for the IEEE 300-bus system, if the attacker wantsjéxt specific error into as
many as 10 state variables. These meters can be quicklyfiddntithin 6 seconds.

We also exhaustively examine the special situation of tijg@ specific error into a sin-
gle state variable for all the IEEE test systems, as in thetcaimed case. Figures 8 and 9
show the number of meters to compromise for these systenthamdrresponding execu-
tion time, respectively. As shown in Figures 8 and 9, for egbanthe attacker can inject a
specific error into any single state variable of the IEEE BO6-system by compromising
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at most 27 meters, and it costs less than 1.4 seconds to firadtiol vector.

These experimental results indicate that the false dagatiop attacks are practical and
easy to launch if the attacker has the configuration infoionaif the target system and can
modify the meter measurements.

5.4 Generalized False Data Injection Attacks

For generalized false data injection attacks, we would ttkeee what an attacker may
achieve beyond false data injection attacks. Hence, wesfoouhe case when an attacker
fails in launching false data injection attacks but is slle to launch the generalized
version of attacks.

5.4.1 Experiment SetupFor false data injection attacks, the attack probabjityis
almost 0 if the attacker cannot compromise more than 10%eofrtaters. Therefore, to
examine the extra impact of generalized false data injeciitacks, we require that the
number of compromised meters is not larger thanx m in all the following experiments,
wherem is the total number of meters in the system. Also, we gendnatdiagonal matrix
W by using random numbers that range from 250 to 1,000 as digtement& To be
consistent with our analysis, we do not limit our attentioraty specific attack scenarios
and goals, but look at general situations where errors geted to a set of state variables
through a set of compromised meters. In all our experimewssetr to 100 and let,
range from0.17 to 7 to see how the change of affects the impact of the generalized
attacks. Note that is a parameter chosen by system operators based on the mtfiser i
system. Thus, different systems may have differewtlues. Herein, we use a fixedfor
the purpose of illustration. We also use the 2-Norm of irgdotrrors as the evaluation
metric.

5.4.2 Impact on All State VariablesWe first evaluate the impact of generalized false
data injection attacks on all state variables. We randorhlyoser; x m meters and

SMATPOWER does not provid8V of the test systems. Hence, we use random numbers close tandiago
elements oW in example 3.7 of [Monticelli 1999] as diagonal elements of Bvir
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assume they are compromised by an attacker, whers a parameter betwedn01 and
0.1, denoting the fraction of compromised meters. We then ¢atiedhe maximum error
that can be injected into the outcome of state estimatiamgusguation (15). For eaaly,
We repeat the above trial 1,000 times and record the avefdbe esults.

Figure 10 shows the average maximum injected error formiffe-; and systems when
7o = 0.17. We can see that the maximum injected error increases agstensbecomes
large. In particular, the injected error is less than 1 fer (BEE 9-bus system but exceeds
10 for the IEEE 300-bus system. Larger systems have higlectad errors, and thus
they are more vulnerable to generalized attacks than snsgtiéems. Figure 11 shows the
maximum injected errors on all state variablesashanges frond.17 (i.e., 10) tor (i.e.,
100) for the IEEE 300-bus system. Larggrand higher; can result in higher injected
error.
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Fig. 11. Maximum impact of generalized false data injectidackis on all state variables as changes for
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According to Theorem 6, the maximum injected errotjs/A,,q., Where, ... is the
largest eigenvalue of matri® = [\/(F'TF)T]-1(Q"TQ")(VF'TF’)~1. Note thatD
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has three factor matrices (i.¢y/(F'TF/)T]~1, Q"TQ", and(vVF'TF’)~1). We would
like to find out which factor matrix is more sensitive to thestgm change. We randomly
select0.1 x m meters and calculate the maximum eigenvalues of each famttix. We
repeat this process 1,000 times and record the average oéshdis as shown in Ta-
ble IV. Note that the eigenvalue d¢f/(F'TF/)T]~! is equal to that of VF'TF’)~1,
since[/(F'TF)T|~! = (VF'TF/)~ L.

Table IV shows that the maximum eigenvalue@fT Q" increases more quickly than
that of [\/(F'TF/)T)~1/(vVF'TF/)~! as the system becomes large. Such increase is quite
significant for the IEEE 300-bus system. In particular, teeiimum eigenvalue o) T Q"
is about 450 times more than that in the IEEE 9-bus systemiassehe maximum eigen-
value of [\/(F/'TF/)T]=1/(vFTF’)~! is less than twice as much as that in the IEEE
9-bus system. This observation reveals that the factorixn@fTQ’ is more sensitive to
the system change than the other factor matrices. Notelthalramatic increase of the
maximum eigenvalue T Q" for the IEEE 300-bus system is visually consistent with
the sharp raise of the maximum errors injected into the myst&eshown in Figure 10.

Table IV. Maximum eigenvalues of the three matrices that fdm

Testsystem | [/(F'TF)T] Y(VF'TF) ' | Q"TQ"
IEEE 9-bus 1.3870 0.0055
IEEE 14-bus 1.5170 0.0171
IEEE 30-bus 1.6903 0.0487
IEEE 118-bus 2.0808 0.0713
IEEE 300-bus 2.4353 2.7643

5.4.3 Impact on Individual State VariabledVe further look at the impact of general-
ized false data injection attacks on individual state \des. For each state variable, we
randomly choosé meters and assume that those meters are compromised bpekeatt
wherek is set t00.01 x m, 0.05 x m, and0.1 x m in our experiments. We then calculate
the maximum injected error based on Equation (15). We rethéaprocess 1,000 times
and use the average of the results as the maximum impact efamed attacks on that
state variable.

Figures 12 and 13 show the empirical cumulative distrilbufienction (CDF) curves
of maximum injected errors when, = 0.17. A point (x,y) on the curve indicates that
y% state variables have the maximum injected error less thagual tox. For all state
variables in the IEEE 118-bus system and most of the statables in the IEEE 300-bus
system, the maximum injected error is quite small (e.g.,;whe- 0.1m, the error injected
into any state variable of the IEEE 118-bus system is less ¢haqual to 0.7 and about
90% state variables of the IEEE 300-bus system are injectedenitirs that are less than
or equal to 2). However, some state variables of the IEEERB0system still have large
injected errors, which can be as high as 8.5. Figures 14 arsthd® the empirical CDF
curves of maximum injected error for different valuesmpfwhenk equals t00.1 x m.
Again, largerr, achieves higher injected error.

As revealed in Table IV and Figure 10, the maximum injectadreis related to the
maximum eigenvalue d)’TQ”. Hence, we perform an experiment to examine the max-
imum eigenvalue 0Q"TQ". We randomly choosk meters, wheré is set t00.01 x m,
0.05 x m, and0.1 x m in our experiment. For each state variable, we generateatine-c
spondingQ”T Q" using the method discussed in Section 4.4.1, and calchl@m@aximum
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Fig. 14. Empirical CDF curves of maximunirig. 15. Empirical CDF curves of maximum
injected errors as, changes for IEEE 118-injected errors as, changes for IEEE 300-

bus system bus system

eigenvalue oQ"TQ”. We repeat this process 1,000 times and record the averape of
results.

Figures 16 and 17 show the empirical CDF curves of eigensatfi€”TQ" for the
IEEE 118-bus and 300-bus systems whgn= 0.17, respectively. We can observe the
same tendency as shown in Figures 16 and 17. For the IEEEUs8ybtem, the maximum
eigenvalue oQ”"TQ" is quite small (e.g., no state variable results in an eigesviéhat is
larger than 0.01). However, for the IEEE 300-bus systemwestate variables can achieve
large eigenvalues that are near 1.

6. CONCLUSION AND FUTURE WORK

In this paper, we identified a previously unknown vulneiipih the current techniques

aimed at detecting and identifying bad measurements ft sdimation in electric power

grids. We investigated the implications of this vulneripithrough presenting and ana-
lyzing a new class of attacks, called false data injectidacis, against state estimation
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Fig. 16. Eigenvalue oRQ"TQ" for IEEE
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in electric power systems. Under the assumption that tlaelst can access the current
power system configuration information and manipulate tleasnrements of meters at
physically protected locations, such attacks can intredubitrary errors into certain state
variables without being detected by existing technique® ddhsidered two attack sce-
narios, where the attacker is either constrained to somafgpmeters, or limited in the
resources required to compromise meters. We showed thattdeker can systematically
and efficiently construct attack vectors in both scenamdsch can not only change the
results of state estimation, but also modify the resultsprealicted way. We also extended
false data injection attacks to generalized false datatinje attacks, and used both the-
oretical analysis and simulation to show that an attackergaan more impact than false
data injection attacks by launching generalized falseid@ation attacks. Despite the the-
oretical capability of these attacks, we also pointed catt$kich attacks are strictly limited
by real-world constraints, and do not pose immediate thri@abur power grids.

In our future work, we would like to extend our results to stastimation using AC
power flow models. Moreover, we would also like to investigidie possibility of adapting
network anomaly detection techniques to defend agairst fédta injection attacks.
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A. GENERATING AN ATTACK VECTOR VIA ELEMENTARY OPERATIONS IN
RANDOM FALSE DATA INJECTION ATTACKS IN SCENARIO |

In this appendix, we show how the attacker can constructtankatector using elementary
column operations wheh > m — n. LetZcter = {j|1 < j < m,j ¢ Lneter}, and

H = (hy,...,h,), whereh; = (hy;, ..., ;)T for 1 <i < n. Forarandony € Z,,cter
(i.e., the meter not under the attacker’s control), theck#n first scand to look for

a column vector whosg-th element is not zero. If the attacker can find such a vector,
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the attacker swaps it with;. Then, the attacker can construct@anx (n — 1) matrix
H! = (h'y,...,h',,_;) by performing column transformations &h (to zero out thej-th
element in all column vectors):

hl.— h1—hh+’ilhi+1,if hjiy1 #0,1<i<n—1 (16)
' h;iq, if hjit1=0,1<i<n-—1

If the j-th element is zero for all the column vectorsKif thenh!; = h; for1 < i <
n — 1. As aresult, thg-th row of H! are all zeros. The attacker repeats this process to the
reduced matriH* and the reduced matrices thereafter using a different eieimg, ...,
until all elements irZ,,..., are exhausted. Finally, the attacker can get a matrix haating
least one column vector, sinee — k < n — 1. The column vectors of the final matrix are
linear combinations of the column vectorsiif and then — k rows with indexj € Z,,cter
of this matrix consist of all 0's. Any column vector can be diss an attack vector.

Note that the above approach looks similar to traditional€s&n elimination [Meyer
2001], since they both use elementary matrix operationbroreate non-zero elements of
a matrix. The difference between them is that Gaussian ®ditiin reduces a given matrix
to either triangular or echelon form, whereas our approass dhot convert the original
matrix into triangular or echelon form. We generate a redunatrix after each iteration
instead, attempting to find a linear combination of columetees of the original matrix.

B. SOLVING a’ FOR RANDOM GENERALIZED ATTACKS IN SCENARIO |

The attacker needs to solwé from B’a’ = Bt to get the attack vectar. As discussed
earlier, if the rank ofB’ is not the same as that of the augmented mdB4Bt), then
B’a’ = Bt is not consistent and thus has no solutionsfor

To ensure equal ranks, the attacker can maniptilstieh thaiBt is a linear combination
of columns of the matriB’, and thus the rank dB’ is the same as that of the augmented
matrix (B/|Bt). A simple way isto let = (0, ...,0,t;,,0,...,0,%;,,0,...,0,¢;,,0, ..., 0)T,
where(t;,, ...,t;, )T can be any vector whose 2-Norm is less thanBy choosing a proper
t, the attacker can solw€ from the equation and’ = B’ (Bt) + (I — B'~B’)d, where
B’~ is the Matrix 1-inverse oB’ andd is any non-zero vector of length The attacker
can construct an attack vectarfrom anya’ # 0. Note that ifB’ is a full rank matrix,
B’"B =Ianda’ = B~ (Bt).

C. SOLVING a’ FOR TARGETED GENERALIZED ATTACKS IN SCENARIO |

The attacker needs to solaé from equationBLa’ = Bst + Bsb to get the attack vector

a. The equatiorB,a’ = B (t + b) has no solution if the rank dB’, is not the same as
that of the augmented matriB’,|Bs(t + b)). This means that the attacker needs to make
B’ and(B’|Bs(t + b)) have the same rank in order to find an attack vector.

Note thatb is a fixed vector. If the rank oB’, is equal to that of the augment ma-
trix (B/|Bsb), the attacker can sat = (0, ...,0,t;,,0, ...,0,¢;,,0,...,0,%;,,0,...,0)T,
where (t;,,...,t;, )T can be any vector whose 2-Norm is less than Consequently,
Bt is a linear combination of columns of the mati, and rank(B’,|Bst + Bsb)) =
rank(B’|Bsb)) = rank B’). Thus, the attack vecter can be obtained by computirg
from equationBLa’ = Bs(t + b).

If the rank of B/, is not the same as that @B’,|Bsb), the attack vector does not neces-
sarily exist. The attacker can treat- b as a whole to determine the existence of an attack
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vector. Specifically, let +b = w = (w1, ..., w,,) andb = (by, ..., b,,)T. The attacker
first setsw = (0, ..., 0, w;, , 0, ..., 0, w;,, 0, ..., 0,w;, , 0, ...,0)T, wherew, , ..., w;, can be
any nonzero value. As a resuBBgw is a linear combination of columns of the matrix
B’ and the rank oB’, equals that of B,|Bsw). Then the attacker determines whether
the attack vector exists or not by checking the 2-Nornt.ofNote thatt = w — b =
(7b1, vy Wiy — bil, vy Wiy — bi27 ey Wiy — bik, ey 7bm,)T. Thus,

= 3 e % <wi—bi>22\/ 3 o (17)

itiy i i=i1 ik iy ik

Therefore, ify/3°,;, ;. b7 <= 7,, the attacker can choose proper valueug,... w;,

to make||t|| less than or equal ta, (e.g., setw;, = b;,,...w;, = b;, ). Hence, the attack
vector can be constructed by solviagfrom equationB,a’ = Bs(t + b). However, if

m > 74, ||t|| is always larger tham, and the attacker cannot generate the
attack vector.
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